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® The Birational Transformation Theorem

Computing log canonical thresholds using jets and arcs
Conventions:

® [ is an algebraically closed field of characteristic 0

e meNU{0}

® X is a scheme of finite type over k

® For a category C, Y € C means Y lives in the class objC
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Let Y € Schy. Its functor of points is the functor AffSch; — Set
defined by

Y (—) = Homgen, (Spec —,Y).

A scheme is determined up to isomorphism by its functor of
points. Intuition: Yoneda lemma, topological invariants that
probe a topological space

Given a functor AffSch; — Set, it is the functor of points of a
scheme Y (also called a representable functor), i.e., isomorphic
to a functor of the form Homgen, (Spec —,Y), if and only if it has
an affine cover and can glue as a sheaf.

In our setting, we’ll define schemes via their functors of points,
and verify their existence via explicit construction.
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Let X € Schit. Define the mth jet space of X, J"™ X (also written
Xm), to be the representing object of the functor Alg, — Set,
A +— Homgen, (Spec A[t]/t™*1, X). In other words, for every
A € Alg;,, we have a functorial bijection of sets:

Homgen, (Spec 4, J™X) 2 Homgen, (Spec A[t] /t™ 1, X).

The A-valued points of J™X are the A[t]/t™!-valued points of
X.

Easy to check: given any X, J°X exists and is isomorphic to X.



Jet spaces

Indeed, we have a bijection

Homgch, (Spec 4, J°X) = Homgen, (Spec A[t]/t°T, X)



Jet spaces

Indeed, we have a bijection

Homgch, (Spec 4, J°X) = Homgen, (Spec A[t]/t°T, X)
>~ Homgcn, (Spec A[t]/t, X)



Jet spaces

Indeed, we have a bijection
Homgch, (Spec 4, J°X) = Homgen, (Spec A[t]/t°T, X)

>~ Homgen, (Spec A[t]/t, X)
= Homgcn, (Spec 4, X)



Jet spaces

Indeed, we have a bijection
Homgch, (Spec 4, J°X) = Homgen, (Spec A[t]/t°T, X)
>~ Homgen, (Spec A[t]/t, X)
>~ Homgen, (Spec A, X)

Since representing objects are unique up to isomorphism, we get
JYX = X as claimed.
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There are natural morphisms between jet spaces. Let m > p.
Since

A[t] A — Al /e,
we have
Spec A[t]/tPT! — Spec A[t]/t™ T,
and so
Homgen, (Spec A[t]/tm'H, X) — Homgen, (Spec A[t}/tp‘H, X);
therefore we have canonical projections
Tmyp :JX = JPX.

Write 7, for mp, o : J™X — JOX >~ X.
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We know J°X exists. What about the case where m > 0?

Theorem. If X € Schgt, then J™X exists.

Proof outline.

1 If X € AffSch!’, then J™X exists.

2 If J™X exists, then given any open subset V C X, J"V
exists and is isomorphic to 7, 'V

3 If X € Schft7 then X has an affine cover U1 U---UU, = X.
4 For each element of the cover, J"U; exists by (1). Do they

glue to form a scheme? Does that scheme satisfy the
functor of points that J™X must?
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1 If X € Aﬂ‘Schft7 then JX exists.

Since X € Aﬁ'Sch};t, X = Speck[z1,...,xn)/(f1, ., fs). We'll
use a closed immersion X < A"™ to show J™X exists.

First see a motivating example: let X = Speck[z,y]/(zy) and
let m = 2. By definition,
Homgen, (Spec A, J2X) = Homgen, (Spec A[t]/t, Spec k[z, y]/(zy))
> Homalg, (k[z, y]/(zy), Alt)/t°)
y)

A k-algebra homomorphism ¢ : k[z,y]/(zy) — A[t]/t3 is deter-

mined by
p(z) = ap + art + ast?
@(y) = by + bit + bot?
subject to

o(xy) = (ag + art + agt?)(bg + bit + bat®) =0 (mod t3).
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choose ag, a1, as, bg, b1,bs € A such that the above relations are
satisfied.



Jet spaces
Distributing
o(zy) = (ap + art + agt?)(by + bit + bat®) =0 (mod t3)
yields
aobo + (a1bo + agb1 )t + (azbo + a1by + aghe)t* = 0.
Equating coefficients, we have
aobo = O,
aibg + apby = 0,
asby + a1by + agbs = 0.
In other words, to choose a map ¢ : k[z,y]/(zy) — A[t]/t? is to
choose ag, a1, as, bg, b1,bs € A such that the above relations are
satisfied.
Thus the map k[z,y]/(zy) — A[t]/t> is the same as a map

klao, a1, a2, bo, b1, ba]/(aobo, a1by + agbi, azby + a1br + agba) — A.
Write k[a, b]/I for this k-algebra.
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Therefore,

Spec A[t]/t*, Spec k[z, y]/(zy))
klz, y)/(zy), Alt]/£)
Kla,bl/1, )

Spec A, Spec kla, b]/I).

Homgcn, (Spec A, J?X) = Homgch,

= HomAlgk

~
= HomAlgk

~—~~ o~ —~~

= HOIIlsCh,C
By uniqueness up to isomorphism, J2X = Spec k[a, b]/I.

This process gives a general algorithm for computing JX for
X e AffSchi’. Specifying an A[t]/t"+1-point of X is a map
¢ k[z1,. .., 20 /(f1,. .., fs) — A[t]/t™F!. Consider the images
o(x;) as (m + 1) choices of elements of A and subject to the
relations f;(o(x1),...,¢(zn)) = 0. Consequently J™X can be
defined as an affine subscheme of A™("+1) given by the vanishing
of a set of polynomials determined by f;s.
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Recall our motivating example X = k[z,y|/(xy) with

JQX = Spec ]{?[ao, ai, az, bo, bl, bg}/(aobo, a1b0 + aobl, a2b0 +a1b; + aobg).
Relabel variables:

J2X 2= Specklw, o’ ", y,y ")/ (wy, o'y + ay' "y + o'y + ay”).

Derivatives!

In fact, since char k = 0 # 2, a change of variables allows us:
J2X = Speck[z, o, 2" y,y "]/ (wy, @'y + zy', 2"y + 22"y + zy”)
J?X = Specklz, ', 2"y, . v/ (zy, (zy)', (xy)")

DERIVATIVES!
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So the algorithm for computing J”" X for X € AffSchit is effec-
tively even simpler, at least conceptually. We have shown (proof
via one example) that

Theorem. If X € Aﬂ"Schft7 ie.,

X = Specklzy,...,zn|/(f1,---, fs),

then J™X exists, and moreover,

JnX Speck[xi,xi’,xi'/,..A,xi("w [1<i<n

]

s B 1" £ ™ 11 <G < s)
where we understand f; ) to mean formal implicit differ-
entiation.
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2 If J™X exists, then given any open subset V C X, J™V
exists and is isomorphic to m, V.

We’ll show 7, 'V satisfies the functor of points that J™V must.

Let A € Alg;, and consider the natural homomorphism induced
by T, ta : Spec A — Spec A[t]/t™!. An m-jet in J™X, a map
f : Spec A[t]/t™ ! — X factors through V if and only if f oy
factors through V.

Spec A » V > X

I

Spec A[t] /™1

Therefore, m,, 'V is the set of jets in J™V C J™X, i.e., the
maps Spec A[t]/t™ 1 — V.
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3 If X e Schft, then X has an affine cover U1 U---UU, = X.

Yep, sure does!

4 For each element of the cover, J"U; exists by (1). Do they
glue to form a scheme? Does that scheme satisfy the
functor of points that J"*X must?

We'd like to see the J™U;s glue to form a scheme, so we need to
consider intersections on which they’d glue.

Since J™U; exist, for each i there are maps 7wt : J™U; — Uj,
and by (2), an intersection J™(U; N Uj) is isomorphic to both
Win_l(Ui NU;) and Wfﬁil(Ui NU;). Thus we have concurrence on
intersections and can glue {J™U;} to form a scheme.

Does the scheme we've just glued satisfy the functor of points
definition that J™X must? Yes, an easy exercise for the reader.
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nonsingular variety of dimension n(m + 1).



Jet spaces

So jet spaces do exist. Some facts:

If X € Vard", then J'X 2 T, the total space of the
tangent bundle, by definition.

If X € Schf’, then J'X = Spec Sym Qy;, where Qxy, is
the module of Kahler differentials of X over k.

If f: X — Y is a morphism of schemes, then there exists a
morphism J"f : J™X — J™Y (also written

fm : Xm = Yim).

If f: X =Y is étale, then J™"X = X xy J™Y.

If X is a nonsingular variety of dimension n, then J™X is a
nonsingular variety of dimension n(m + 1).

The maps mp,p : J"X — JPX, m > p, are affine
morphisms of k-schemes.
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Arc spaces

Let X € Schit. We have a diagram of affine morphisms of k-
schemes

e X 5 I 5 S5 T 5 X =X

By abstract nonsense, the projective limit of this diagram exists
in Schk.

Define the arc space of X, J°X (also written X, and sometimes
L(X)), to be the projective limit

JFX = @JmX.
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Arcs of affine schemes can be defined via a functor of points. If
X € AffSchy, then for all A € Alg;, we have using the functor
of points description of jet schemes,

Homgen, (Spec A, JCX) = 1&1 Homgen, (Spec A, J™X)

= lim Homgen, (Spec A[t]/t™ T, X)
= Homgeh, (Spec A[t], X).



Arc spaces

Arcs of affine schemes can be defined via a functor of points. If
X € AffSchy, then for all A € Alg;, we have using the functor
of points description of jet schemes,

Homgen, (Spec A, JCX) = @Homschk(Spec A, J"X)
= '&nHomschk(Spec Aft)/tm™ X))
= Homgeh, (Spec A[t], X).
If X € Schy, then any Speck[t]/t™"! — X and Speck[t] — X
must factor through any affine open neighborhood of the image

of the closed point. Consequently, the elements of J*X (k) cor-
respond to arcs in X; i.e., we have a bijection

Homgeh, (Spec k, J>° X)) = Homgeh, (Spec k[t], X).
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Arc spaces

Our X is always of finite type, but see that J*°X rarely is. If
X e Aﬁ'Schit, using our previous theorem, we have

Theorem. If X € Aﬂ'Schft, then

00y o klzg, o 2, .. |1 <i <n) _
JX = Spec iy Li 5 Tg /(fj7fjl7fj”7---‘1§]§5)'

Other facts:
® By construction there are natural affine morphisms
U : JX — JTX.
o If f: X — Y is étale, then J*X = X xy J*Y.
® Theorem [Kolchin|. If X is a variety, then J>*X is

irreducible. (X nonsingular is easy, X singular requires
resolution of singularities (char k = 0))
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Cylinders
A subset S of a scheme Y is said to be constructible if it is a
finite union of locally closed subsets.

A cylinder in J*®X is a subset of the form C = 1, ~(S) for some
S C J™X a constructible subset.

We say a cylinder C' = ), "*(S) is closed / open / locally closed
/ irreducible if S is.

Let C = 1, *(S) be a cylinder. We define
codim(C) := codim(S, J"X) = (m + 1)n — dim(S)

(independent of m).
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Cylinders

Let X be nonsingular. Facts about cylinders:

1

If C = 4, 1(S), then given an irreducible decomposition
S=S81U---US,, we get C =, L(S1)U--- Uy, 1(S,).
In particular, if S has a finite irreducible decomposition,
then C' = 1, (S) has a finite irreducible decomposition.
If C =1, 1(S) is a cylinder, then C = 1, 1(S) is a
cylinder.

If C’ is an irreducible component of a cylinder C, then

there does not exist a proper closed subset Z C X such
that C" C J*Z.



Cylinders

Let X be nonsingular. Facts about cylinders:
1 If C' = 1,7 1(S), then given an irreducible decomposition
S=S81U---US,, we get C =, L(S1)U--- Uy, 1(S,).
2 In particular, if S has a finite irreducible decomposition,
then C' = 1, (S) has a finite irreducible decomposition.
3 If C =1, 1(9) is a cylinder, then C = 1, 1(S) is a
cylinder.

4 If C’ is an irreducible component of a cylinder C, then
there does not exist a proper closed subset Z C X such
that C' C J>*Z.

If X is singular, bullets (1) and (4) fail, while (3) is an open
problem.
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generated by ¢°rdz(7),
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Cylinders

Important example of cylinders:

Let Z C X be a proper closed subscheme. Define a function
ordz : J®X — NU{0, oo} given by, if v : Speck[t] - X € J*X,
then the inverse image of the ideal defining Z is an ideal in k[t]
generated by ¢°rdz(7),

The contact locus of order m with Z is defined to be the set
Cont™(Z) = ordz!(m). Similarly, Cont="(Z) = ordz (> m).
One can check that

Cont="(Z) = thy_1 H(J™12),

so Cont=™(Z) is a closed cylinder. Also Cont™(Z) is a locally
closed cylinder.
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The Birational Transformation Theorem
The Birational Transformation Theorem [Kontsevich] describes
the behavior of contact loci defined by a particular effective divi-
sor Kx/y C X for a fixed map f: X — Y. We will state it, then
use it to calculate log canonical thresholds using jets and arcs.



The Birational Transformation Theorem
The Birational Transformation Theorem [Kontsevich] describes
the behavior of contact loci defined by a particular effective divi-
sor Kx/y C X for a fixed map f: X — Y. We will state it, then
use it to calculate log canonical thresholds using jets and arcs.

Setup: let f : X — Y be a proper birational morphism. Let
dim X =dimY =n. Give X and Y local coordinates at P € X
and f(P) € Y; call them x1,...,2, and y1,...,y,. Define the
relative canonical divisor K x/y to be the unique effective divisor
obtained by local equation at P € X the determinant of the
Jacobian

T 1 1
of1
Oxo
Oz, 0Tn

where f; € k[z1,...,z,] is given by f*(v;) = fi(z1, ..., xn).
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Setup (cont.): Define a cylinder C(©) := Cont®(K x/y) for e € N.
Write X @ J*X — J™X and ), : JXY — J™Y. Write
ﬂf,ip :JMX — JPX and ﬂ'%/%p :JMY — JPY.



The Birational Transformation Theorem

Setup (cont.): Define a cylinder C(©) := Cont®(K x/y) for e € N.
Write X @ J*X — J™X and ), : JXY — J™Y. Write
ﬂf,ip :JMX — JPX and ﬂ'%/%p :JMY — JPY.

Theorem [Kontsevich|. Given the prior setup, let m > 2e.
1 Let ym, v, € J™X. If v € 9:X (C©)) and
T f (ym) = T f (), then
ﬂé,m—e(vm) = ﬂ-r)ri,m—e(’)/;n)'
2 The induced map

Y (C) = T f (W (C1))

is piecewise trivial with fiber A€.
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Computing log canonical thresholds
using jets and arcs

Recall: let X be a nonsingular variety and Y C X a proper closed
subscheme. Let f: X’ — X be a log resolution of (X,Y); i.e., f
is proper and birational, X’ is nonsingular, and f~1(Y) + Kxi/x
has simple normal crossings. We have seen that the log canonical
threshold can be defined as

k; +1

let(X,Y) == min ,
7 a;

where

fﬁl(Y) = Z CLiEi and KX’/X = Z szz
=1 =1



Computing log canonical thresholds

using jets and arcs
Theorem [Ein-Lazarsfeld-Mustata]. Let f : X’ — X be a log
resolution of (X,Y) and as before write f~1(Y) = > a;E; and

Kxix = Y kiEi. WLOG, f is an isomorphism over X \ 'Y, so
f7H(Y) is effective. For all m € N,

S
codim(Cont™(Y)) = myin Z:(kZ + 1Dy,
i=1
where v = (v;) € N* such that

iaiw =m and ﬂ E; # 0.
i=1

111'21
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3 After that use Kontsevich’s Birational Transformation
Theorem to compute the contact loci of the relative
canonical divisor Ky, x.
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Proof outline.
1 First decompose f~1(Cont™(Y)) into a finite disjoint
union.
2 Next compute the codimension of each piece.

3 After that use Kontsevich’s Birational Transformation
Theorem to compute the contact loci of the relative
canonical divisor Ky, x.

4 Put the pieces together to complete the theorem.
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1 First decompose f~1(Cont™(Y)) into a finite disjoint
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Computing log canonical thresholds

using jets and arcs
1 First decompose f~1(Cont™(Y)) into a finite disjoint
union.
The decomposition is

f~HCont™(Y)) = Cont™(f~1(Y))

= Cont™ (zs: CLZEZ>

=1

= H (ﬂ Cont”i(E¢)> )
=1

v

where v = (v;) and

s
E a;V; = m.
=1

We'll write Cont” (E) for () Cont”? (E;).
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2 Next compute the codimension of each piece.

Our decomposition is f~!(Cont™(Y)) = ][] Cont”(E). Since
> E; has simple normal crossings, to compute codim(Cont” (F)),
we may take an étale morphism to A" so that F; is a hyperplane
in an affine space. Using this we see that Cont”(E) # 0 if and
only if

ﬂEﬁé@,

I/Z'ZI

and in this case

codim(Cont”(E)) = Z v;.
i=1
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3 After that use Kontsevich’s Birational Transformation
Theorem to compute the contact loci of the relative
canonical divisor Ky, x.
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3 After that use Kontsevich’s Birational Transformation
Theorem to compute the contact loci of the relative
canonical divisor Ky, x.

Note that Cont”(E) C Cont®(Kx//x) where e = ) kjv;. Let
p > 0. By [Kontsevich] (1), ¢, (Cont”(E)) is a union of fibers
of JPf. By [Kontsevich] (2),

codim(J™ f(Cont”(E))) = Y (ki + 1)vi.
=1
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4 Put the pieces together to complete the theorem.
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4 Put the pieces together to complete the theorem.

Since f~1(Cont™(Y)) = ][] Cont”(E), we also have a decompo-
sition Cont™(Y") = [[ J*°f(Cont”(E)) (Proposition: J®f is a
bijection over Cont™(Y")). Therefore,

codim(Cont™(Y')) = min codim(J* f(Cont” (E)))
= min Z(k’ + Vv,
=1

as desired.
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Corollary. If X is a nonsingular variety and Y C X is a proper
closed subscheme, then
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Corollary. If X is a nonsingular variety and Y C X is a proper
closed subscheme, then

let(X,Y) == min kit = dim(X) —maxw.
i a; m m+1
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Corollary. If X is a nonsingular variety and Y C X is a proper
closed subscheme, then

let(X,Y) == min kit = dim(X) —maxw.
i a; m m+1

Proof.
[ELM] implies that codim(Cont="(Y)) = min, >_(k; + 1)v;,
where v = (v;) satisfies m < )" a;v;.
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Corollary. If X is a nonsingular variety and Y C X is a proper
closed subscheme, then

let(X,Y) == min kit = dim(X) —maxw.
i a; m m+1

Proof.

[ELM] implies that codim(Cont="(Y)) = min, >_(k; + 1)v;,
where v = (v;) satisfies m < )" a;v;.
For all 4, let(X, Y )a; < k; + 1 by definition.
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Corollary. If X is a nonsingular variety and Y C X is a proper
closed subscheme, then

ki +1 ) dim(J™Y
let(X,Y) == min R dim(X) — max %
i a; m m+1

Proof (cont.).
Hence
mlct(X,Y) < codim(Cont="(Y))
= codim(J" Y, J" LX)
= mdim(X) — dim(J™'Y).
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Corollary. If X is a nonsingular variety and Y C X is a proper

closed subscheme, then

ki +1 dim(J™Y
let(X,Y) == min R dim(X) — max %

7 a; m m—|—1

Proof (cont.).

Let ¢ be the index that realizes lct(X,Y’) = (k; + 1)/ay. Let v
be vy > 1 and v; = 0 for i # £, then

codim(Cont="(Y)) < agvylct(X,Y).
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Corollary. If X is a nonsingular variety and Y C X is a proper

closed subscheme, then

ki +1 dim(J™Y
let(X,Y) == min R dim(X) — max %

7 a; m m—|—1

Proof (cont.).

Let ¢ be the index that realizes lct(X,Y’) = (k; + 1)/ay. Let v
be vy > 1 and v; = 0 for i # £, then

codim(Cont="(Y)) < agvylct(X,Y).

Thus dim(J™ 1Y) > m(dim(X) — let(X,Y)) if a; divides m.
Rearrange and the result is shown. O
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Example. We've already seen that lct(A2%, V(xy)) = 1 since
V(zy) has s.n.c. Via the corollary, we also see

1et(A%,V (ay) = dim(A?) — max TTV0)
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Example. We've already seen that lct(A2%, V(xy)) = 1 since
V(zy) has s.n.c. Via the corollary, we also see

lct (A2, V(zy)) = dim(A?) — max W
A quick jaunt to Macaulay2 confirms
dim(JV (zy)) = dim(V (zy)) = 1,
dim (J'V (z)) = dim(V (zy, (y)')) = 2,
dim(J*V (zy)) = dim(V (zy, (2y)’, (2y)") = 3,
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using jets and arcs
Example. We've already seen that lct(A2%, V(xy)) = 1 since
V(zy) has s.n.c. Via the corollary, we also see

lct (A2, V(zy)) = dim(A?) — max W
A quick jaunt to Macaulay2 confirms
dim(JV (zy)) = dim(V (zy)) = 1,
dim(J'V (zy)) = dim(V (zy, (zy))) = 2,
dim(J*V (zy)) = dim(V (zy, (2y)’, (2y)") = 3,

SO

)

lct(A% V (2zy)) =2 — max{

[
[\CR N V]
Wl w
H,_/
Il
[\
\
—
Il
[u—
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Example. We've also seen lct(A2, V(22 — 4?)) = 5/6.

let(A%, V(a? — ) = dim(A?) — max 20"V = 97)

m m+1
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Example. We've also seen lct(A2, V(22 — 4?)) = 5/6.

lct(A?, V(2 — ) = dim(A?%) — max dim(J"V (2 - y3)).

m m+1

We calculate
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using jets and arcs
Example. We've also seen lct(A2, V(22 — 4?)) = 5/6.

lct(A?, V(2 — ) = dim(A?%) — max dim(J"V (2 - y3)).

m m+1

We calculate

dim(J°V (2% — y3)) =7,
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using jets and arcs
Example. We've also seen lct(A2, V(22 — 4?)) = 5/6.

lct(A?, V(2 — ) = dim(A?%) — max dim(J"V (2 - y3)).

m m+1

We calculate

dim(J°V (2% — y3)) =7,
S0

lct(AQ,V(a:Q—y3)):2—max{1,1,1...,2,...}:2—2:
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Feel free to double check my computation of dim(J%V (2% — 3?))
in M2:

i1 : R=QQ[x0,x1,x2,x3,x4,x5,y0,y1,y2,y3,y4,y5]
i2 : I=ideal((x0)"2-(y0)"3,
2*x0%x1-3%(y0) “2*y1,
2%x0%x2+2% (x1) "2-3% (y0) ~2*%y2-6xy0x* (y1) "2,
2%x0%x3+6*x1*x2-3% (y0) "2%y3-6* (y1) "3-18%y0*y1*y2,
2%x0%x4+6% (x2) " 2+8%x3*x1-3*y4* (y0) "2-18%y0* (y2) "2-24xy3+y0*y1-36% (y1) "2xy2,
2%x0%x5+10*x4*x1+20%x3%x2-3*y5* (y0) "2-60%y3*y0*y2-60*y3+ (y1) "2-30*y1xy0xy4-90*y1*(y2) ~2)
i3 @ dim(I)



