Jets, arcs, and cylinders
Eric Walker cew028@uark.edu
Jet Spaces / Arc Spaces Learning Seminar: UCSD
19 May 2021

Outline

Resources:

- M. Mustaţă, Spaces of arcs in birational geometry.
- T. de Fernex, The space of arcs of an algebraic variety.

Outline

Resources:

- M. Mustaţă, Spaces of arcs in birational geometry.
- T. de Fernex, The space of arcs of an algebraic variety.

Topics:

- Quick review of functors of points
- Jet spaces
- Arc spaces
- Cylinders
- The Birational Transformation Theorem
- Computing log canonical thresholds using jets and arcs

Outline

Resources:

- M. Mustaţă, Spaces of arcs in birational geometry.
- T. de Fernex, The space of arcs of an algebraic variety.

Topics:

- Quick review of functors of points
- Jet spaces
- Arc spaces
- Cylinders
- The Birational Transformation Theorem
- Computing log canonical thresholds using jets and arcs Conventions:
- k is an algebraically closed field of characteristic 0
- $m \in \mathbf{N} \cup\{0\}$
- X is a scheme of finite type over k
- For a category $\mathcal{C}, Y \in \mathcal{C}$ means Y lives in the class obj \mathcal{C}

Quick review of functors of points

Quick review of functors of points

Let $Y \in \mathbf{S c h}_{k}$. Its functor of points is the functor $\mathbf{A f f S} \mathbf{c h}_{k} \rightarrow$ Set defined by

$$
Y(-)=\operatorname{Hom}_{\mathbf{S c h}_{k}}(\operatorname{Spec}-, Y)
$$

Quick review of functors of points

Let $Y \in \mathbf{S c h}_{k}$. Its functor of points is the functor $\mathbf{A f f S c h}{ }_{k} \rightarrow$ Set defined by

$$
Y(-)=\operatorname{Hom}_{\mathbf{S c h}_{k}}(\operatorname{Spec}-, Y)
$$

A scheme is determined up to isomorphism by its functor of points. Intuition: Yoneda lemma, topological invariants that probe a topological space

Quick review of functors of points

Let $Y \in \mathbf{S c h}_{k}$. Its functor of points is the functor $\mathbf{A f f S c h}{ }_{k} \rightarrow$ Set defined by

$$
Y(-)=\operatorname{Hom}_{\mathbf{S c h}_{k}}(\operatorname{Spec}-, Y)
$$

A scheme is determined up to isomorphism by its functor of points. Intuition: Yoneda lemma, topological invariants that probe a topological space

Given a functor $\mathbf{A f f S c h} \boldsymbol{H}_{k} \rightarrow \mathbf{S e t}$, it is the functor of points of a scheme Y (also called a representable functor), i.e., isomorphic to a functor of the form $\operatorname{Hom}_{\mathbf{S c h}_{k}}(\mathrm{Spec}-, Y)$, if and only if it has an affine cover and can glue as a sheaf.

Quick review of functors of points

Let $Y \in \mathbf{S c h}_{k}$. Its functor of points is the functor $\mathbf{A f f S c h}{ }_{k} \rightarrow$ Set defined by

$$
Y(-)=\operatorname{Hom}_{\mathbf{S c h}_{k}}(\operatorname{Spec}-, Y)
$$

A scheme is determined up to isomorphism by its functor of points. Intuition: Yoneda lemma, topological invariants that probe a topological space

Given a functor $\mathbf{A f f S c h} \boldsymbol{H}_{k} \rightarrow \mathbf{S e t}$, it is the functor of points of a scheme Y (also called a representable functor), i.e., isomorphic to a functor of the form $\operatorname{Hom}_{\mathbf{S c h}_{k}}(\mathrm{Spec}-, Y)$, if and only if it has an affine cover and can glue as a sheaf.

In our setting, we'll define schemes via their functors of points, and verify their existence via explicit construction.

Jet spaces

Jet spaces

Let $X \in \mathbf{S c h}_{k}^{f t}$. Define the m th jet space of $X, J^{m} X$ (also written $\left.X_{m}\right)$, to be the representing object of the functor $\mathbf{A l g} \boldsymbol{g}_{k} \rightarrow \mathbf{S e t}$, $A \mapsto \operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A[t] / t^{m+1}, X\right)$. In other words, for every $A \in \mathbf{A l g}_{k}$, we have a functorial bijection of sets:

Jet spaces

Let $X \in \mathbf{S c h}_{k}^{f t}$. Define the m th jet space of $X, J^{m} X$ (also written $\left.X_{m}\right)$, to be the representing object of the functor $\mathbf{A l g}_{k} \rightarrow$ Set, $A \mapsto \operatorname{Hom}_{\mathbf{S c h}_{k}}\left(\operatorname{Spec} A[t] / t^{m+1}, X\right)$. In other words, for every $A \in \mathbf{A l g}_{k}$, we have a functorial bijection of sets:
$\operatorname{Hom}_{\mathbf{S c h}_{k}}\left(\operatorname{Spec} A, J^{m} X\right) \cong \operatorname{Hom}_{\mathbf{S c h}_{k}}\left(\operatorname{Spec} A[t] / t^{m+1}, X\right)$.

Jet spaces

Let $X \in \mathbf{S c h}_{k}^{f t}$. Define the m th jet space of $X, J^{m} X$ (also written $\left.X_{m}\right)$, to be the representing object of the functor $\mathbf{A l g}_{k} \rightarrow$ Set, $A \mapsto \operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A[t] / t^{m+1}, X\right)$. In other words, for every $A \in \mathbf{A l g}_{k}$, we have a functorial bijection of sets:
$\operatorname{Hom}_{\mathbf{S c h}_{k}}\left(\operatorname{Spec} A, J^{m} X\right) \cong \operatorname{Hom}_{\operatorname{Sch}_{k}}\left(\operatorname{Spec} A[t] / t^{m+1}, X\right)$.

The A-valued points of $J^{m} X$ are the $A[t] / t^{m+1}$-valued points of X.

Jet spaces

Let $X \in \mathbf{S c h}_{k}^{f t}$. Define the m th jet space of $X, J^{m} X$ (also written $\left.X_{m}\right)$, to be the representing object of the functor $\mathbf{A l g}_{k} \rightarrow$ Set, $A \mapsto \operatorname{Hom}_{\mathbf{S c h}_{k}}\left(\operatorname{Spec} A[t] / t^{m+1}, X\right)$. In other words, for every $A \in \mathbf{A l g}_{k}$, we have a functorial bijection of sets:
$\operatorname{Hom}_{\mathbf{S c h}_{k}}\left(\operatorname{Spec} A, J^{m} X\right) \cong \operatorname{Hom}_{\operatorname{Sch}_{k}}\left(\operatorname{Spec} A[t] / t^{m+1}, X\right)$.

The A-valued points of $J^{m} X$ are the $A[t] / t^{m+1}$-valued points of X.

Easy to check: given any $X, J^{0} X$ exists and is isomorphic to X.

Jet spaces

Indeed, we have a bijection
$\operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A, J^{0} X\right) \cong \operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A[t] / t^{0+1}, X\right)$

Jet spaces

Indeed, we have a bijection

$$
\begin{aligned}
\operatorname{Hom}_{\operatorname{Sch}_{k}}\left(\operatorname{Spec} A, J^{0} X\right) & \cong \operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A[t] / t^{0+1}, X\right) \\
& \cong \operatorname{Hom}_{\mathbf{S c h}_{k}}(\operatorname{Spec} A[t] / t, X)
\end{aligned}
$$

Jet spaces

Indeed, we have a bijection

$$
\begin{aligned}
\operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A, J^{0} X\right) & \cong \operatorname{Hom}_{\mathbf{S c h}_{k}}\left(\operatorname{Spec} A[t] / t^{0+1}, X\right) \\
& \cong \operatorname{Hom}_{\mathbf{S c h}_{k}}(\operatorname{Spec} A[t] / t, X) \\
& \cong \operatorname{Hom}_{\mathbf{S c h}_{k}}(\operatorname{Spec} A, X)
\end{aligned}
$$

Jet spaces

Indeed, we have a bijection

$$
\begin{aligned}
\operatorname{Hom}_{\mathbf{S c h}_{k}}\left(\operatorname{Spec} A, J^{0} X\right) & \cong \operatorname{Hom}_{\mathbf{S c h}_{k}}\left(\operatorname{Spec} A[t] / t^{0+1}, X\right) \\
& \cong \operatorname{Hom}_{\mathbf{S c h}_{k}}(\operatorname{Spec} A[t] / t, X) \\
& \cong \operatorname{Hom}_{\mathbf{S c h}_{k}}(\operatorname{Spec} A, X)
\end{aligned}
$$

Since representing objects are unique up to isomorphism, we get $J^{0} X \cong X$ as claimed.

Jet spaces

There are natural morphisms between jet spaces. Let $m>p$. Since

Jet spaces

There are natural morphisms between jet spaces. Let $m>p$. Since

$$
A[t] / t^{m+1} \rightarrow A[t] / t^{p+1}
$$

we have

Jet spaces

There are natural morphisms between jet spaces. Let $m>p$. Since

$$
A[t] / t^{m+1} \rightarrow A[t] / t^{p+1}
$$

we have

$$
\operatorname{Spec} A[t] / t^{p+1} \rightarrow \operatorname{Spec} A[t] / t^{m+1},
$$

and so

Jet spaces

There are natural morphisms between jet spaces. Let $m>p$. Since

$$
A[t] / t^{m+1} \rightarrow A[t] / t^{p+1}
$$

we have

$$
\operatorname{Spec} A[t] / t^{p+1} \rightarrow \operatorname{Spec} A[t] / t^{m+1},
$$

and so
$\operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A[t] / t^{m+1}, X\right) \rightarrow \operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A[t] / t^{p+1}, X\right) ;$
therefore we have canonical projections

Jet spaces

There are natural morphisms between jet spaces. Let $m>p$. Since

$$
A[t] / t^{m+1} \rightarrow A[t] / t^{p+1}
$$

we have

$$
\operatorname{Spec} A[t] / t^{p+1} \rightarrow \operatorname{Spec} A[t] / t^{m+1},
$$

and so
$\operatorname{Hom}_{\operatorname{Sch}_{k}}\left(\operatorname{Spec} A[t] / t^{m+1}, X\right) \rightarrow \operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A[t] / t^{p+1}, X\right) ;$
therefore we have canonical projections

$$
\pi_{m, p}: J^{m} X \rightarrow J^{p} X
$$

Jet spaces

There are natural morphisms between jet spaces. Let $m>p$. Since

$$
A[t] / t^{m+1} \rightarrow A[t] / t^{p+1}
$$

we have

$$
\operatorname{Spec} A[t] / t^{p+1} \rightarrow \operatorname{Spec} A[t] / t^{m+1},
$$

and so
$\operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A[t] / t^{m+1}, X\right) \rightarrow \operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A[t] / t^{p+1}, X\right) ;$
therefore we have canonical projections

$$
\pi_{m, p}: J^{m} X \rightarrow J^{p} X
$$

Write π_{m} for $\pi_{m, 0}: J^{m} X \rightarrow J^{0} X \cong X$.

Jet spaces

We know $J^{0} X$ exists. What about the case where $m>0$?

Jet spaces

We know $J^{0} X$ exists. What about the case where $m>0$?
Theorem. If $X \in \mathbf{S c h}_{k}^{f t}$, then $J^{m} X$ exists.

Jet spaces

We know $J^{0} X$ exists. What about the case where $m>0$? Theorem. If $X \in \mathbf{S c h}_{k}^{f t}$, then $J^{m} X$ exists.

Proof outline.

Jet spaces

We know $J^{0} X$ exists. What about the case where $m>0$?
Theorem. If $X \in \mathbf{S c h}_{k}^{f t}$, then $J^{m} X$ exists.

Proof outline.

1 If $X \in \operatorname{AffSch}_{k}^{f t}$, then $J^{m} X$ exists.

Jet spaces

We know $J^{0} X$ exists. What about the case where $m>0$?
Theorem. If $X \in \mathbf{S c h}_{k}^{f t}$, then $J^{m} X$ exists.

Proof outline.

1 If $X \in \mathbf{A f f S c h}_{k}^{f t}$, then $J^{m} X$ exists.
2 If $J^{m} X$ exists, then given any open subset $V \subseteq X, J^{m} V$ exists and is isomorphic to $\pi_{m}{ }^{-1} V$.

Jet spaces

We know $J^{0} X$ exists. What about the case where $m>0$?
Theorem. If $X \in \mathbf{S c h}_{k}^{f t}$, then $J^{m} X$ exists.

Proof outline.

1 If $X \in \operatorname{AffSch}_{k}^{f t}$, then $J^{m} X$ exists.
2 If $J^{m} X$ exists, then given any open subset $V \subseteq X, J^{m} V$ exists and is isomorphic to $\pi_{m}{ }^{-1} V$.
3 If $X \in \mathbf{S c h}_{k}^{f t}$, then X has an affine cover $U_{1} \cup \cdots \cup U_{r}=X$.

Jet spaces

We know $J^{0} X$ exists. What about the case where $m>0$?
Theorem. If $X \in \mathbf{S c h}_{k}^{f t}$, then $J^{m} X$ exists.

Proof outline.

1 If $X \in \operatorname{AffSch}_{k}^{f t}$, then $J^{m} X$ exists.
2 If $J^{m} X$ exists, then given any open subset $V \subseteq X, J^{m} V$ exists and is isomorphic to $\pi_{m}{ }^{-1} V$.
3 If $X \in \mathbf{S c h}_{k}^{f t}$, then X has an affine cover $U_{1} \cup \cdots \cup U_{r}=X$.
4 For each element of the cover, $J^{m} U_{i}$ exists by (1). Do they glue to form a scheme? Does that scheme satisfy the functor of points that $J^{m} X$ must?

Jet spaces

(1) If $X \in \operatorname{AffSch}_{k}^{f t}$, then $J^{m} X$ exists.

Jet spaces

(1) If $X \in \operatorname{AffSch}_{k}^{f t}$, then $J^{m} X$ exists.

Since $X \in \operatorname{AffSch}_{k}^{f t}, X \cong \operatorname{Spec} k\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{s}\right)$. We'll use a closed immersion $X \hookrightarrow \mathbf{A}^{n}$ to show $J^{m} X$ exists.

Jet spaces

(1) If $X \in \operatorname{AffSch}_{k}^{f t}$, then $J^{m} X$ exists.

Since $X \in \mathbf{A f f S c h}_{k}^{f t}, X \cong \operatorname{Spec} k\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{s}\right)$. We'll use a closed immersion $X \hookrightarrow \mathbf{A}^{n}$ to show $J^{m} X$ exists.

First see a motivating example: let $X \cong \operatorname{Spec} k[x, y] /(x y)$ and let $m=2$. By definition,
$\operatorname{Hom}_{\mathbf{S c h}_{k}}\left(\operatorname{Spec} A, J^{2} X\right) \cong \operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A[t] / t^{3}, \operatorname{Spec} k[x, y] /(x y)\right)$

Jet spaces

(1) If $X \in \operatorname{AffSch}_{k}^{f t}$, then $J^{m} X$ exists.

Since $X \in \mathbf{A f f S c h}_{k}^{f t}, X \cong \operatorname{Spec} k\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{s}\right)$. We'll use a closed immersion $X \hookrightarrow \mathbf{A}^{n}$ to show $J^{m} X$ exists.

First see a motivating example: let $X \cong \operatorname{Spec} k[x, y] /(x y)$ and let $m=2$. By definition,
$\operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A, J^{2} X\right) \cong \operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A[t] / t^{3}, \operatorname{Spec} k[x, y] /(x y)\right)$
$\cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(k[x, y] /(x y), A[t] / t^{3}\right)$.

Jet spaces

(1) If $X \in \operatorname{AffSch}_{k}^{f t}$, then $J^{m} X$ exists.

Since $X \in \operatorname{AffSch}_{k}^{f t}, X \cong \operatorname{Spec} k\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{s}\right)$. We'll use a closed immersion $X \hookrightarrow \mathbf{A}^{n}$ to show $J^{m} X$ exists.

First see a motivating example: let $X \cong \operatorname{Spec} k[x, y] /(x y)$ and let $m=2$. By definition,
$\operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A, J^{2} X\right) \cong \operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A[t] / t^{3}, \operatorname{Spec} k[x, y] /(x y)\right)$

$$
\cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(k[x, y] /(x y), A[t] / t^{3}\right)
$$

A k-algebra homomorphism $\varphi: k[x, y] /(x y) \rightarrow A[t] / t^{3}$ is determined by

Jet spaces

(1) If $X \in \operatorname{AffSch}_{k}^{f t}$, then $J^{m} X$ exists.

Since $X \in \mathbf{A f f S c h}_{k}^{f t}, X \cong \operatorname{Spec} k\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{s}\right)$. We'll use a closed immersion $X \hookrightarrow \mathbf{A}^{n}$ to show $J^{m} X$ exists.

First see a motivating example: let $X \cong \operatorname{Spec} k[x, y] /(x y)$ and let $m=2$. By definition,
$\operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A, J^{2} X\right) \cong \operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A[t] / t^{3}, \operatorname{Spec} k[x, y] /(x y)\right)$

$$
\cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(k[x, y] /(x y), A[t] / t^{3}\right)
$$

A k-algebra homomorphism $\varphi: k[x, y] /(x y) \rightarrow A[t] / t^{3}$ is determined by

$$
\begin{aligned}
& \varphi(x):=a_{0}+a_{1} t+a_{2} t^{2} \\
& \varphi(y):=b_{0}+b_{1} t+b_{2} t^{2}
\end{aligned}
$$

subject to

$$
\varphi(x y)=\left(a_{0}+a_{1} t+a_{2} t^{2}\right)\left(b_{0}+b_{1} t+b_{2} t^{2}\right)=0 \quad\left(\bmod t^{3}\right) .
$$

Jet spaces

Distributing

$$
\varphi(x y)=\left(a_{0}+a_{1} t+a_{2} t^{2}\right)\left(b_{0}+b_{1} t+b_{2} t^{2}\right)=0 \quad\left(\bmod t^{3}\right)
$$

yields

$$
a_{0} b_{0}+\left(a_{1} b_{0}+a_{0} b_{1}\right) t+\left(a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}\right) t^{2}=0
$$

Jet spaces

Distributing

$$
\varphi(x y)=\left(a_{0}+a_{1} t+a_{2} t^{2}\right)\left(b_{0}+b_{1} t+b_{2} t^{2}\right)=0 \quad\left(\bmod t^{3}\right)
$$

yields

$$
a_{0} b_{0}+\left(a_{1} b_{0}+a_{0} b_{1}\right) t+\left(a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}\right) t^{2}=0
$$

Equating coefficients, we have

$$
\begin{aligned}
a_{0} b_{0} & =0, \\
a_{1} b_{0}+a_{0} b_{1} & =0, \\
a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2} & =0 .
\end{aligned}
$$

Jet spaces

Distributing

$$
\varphi(x y)=\left(a_{0}+a_{1} t+a_{2} t^{2}\right)\left(b_{0}+b_{1} t+b_{2} t^{2}\right)=0 \quad\left(\bmod t^{3}\right)
$$

yields

$$
a_{0} b_{0}+\left(a_{1} b_{0}+a_{0} b_{1}\right) t+\left(a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}\right) t^{2}=0
$$

Equating coefficients, we have

$$
\begin{aligned}
a_{0} b_{0} & =0, \\
a_{1} b_{0}+a_{0} b_{1} & =0, \\
a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2} & =0 .
\end{aligned}
$$

In other words, to choose a map $\varphi: k[x, y] /(x y) \rightarrow A[t] / t^{3}$ is to choose $a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2} \in A$ such that the above relations are satisfied.

Jet spaces

Distributing

$$
\varphi(x y)=\left(a_{0}+a_{1} t+a_{2} t^{2}\right)\left(b_{0}+b_{1} t+b_{2} t^{2}\right)=0 \quad\left(\bmod t^{3}\right)
$$

yields

$$
a_{0} b_{0}+\left(a_{1} b_{0}+a_{0} b_{1}\right) t+\left(a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}\right) t^{2}=0
$$

Equating coefficients, we have

$$
\begin{aligned}
a_{0} b_{0} & =0, \\
a_{1} b_{0}+a_{0} b_{1} & =0, \\
a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2} & =0 .
\end{aligned}
$$

In other words, to choose a map $\varphi: k[x, y] /(x y) \rightarrow A[t] / t^{3}$ is to choose $a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2} \in A$ such that the above relations are satisfied.
Thus the map $k[x, y] /(x y) \rightarrow A[t] / t^{3}$ is the same as a map $k\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right] /\left(a_{0} b_{0}, a_{1} b_{0}+a_{0} b_{1}, a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}\right) \rightarrow A$. Write $k[\underline{a}, \underline{b}] / I$ for this k-algebra.

Jet spaces

Therefore,
$\operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A, J^{2} X\right) \cong \operatorname{Hom}_{\mathbf{S c h}_{k}}\left(\operatorname{Spec} A[t] / t^{3}, \operatorname{Spec} k[x, y] /(x y)\right)$ $\cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(k[x, y] /(x y), A[t] / t^{3}\right)$

Jet spaces

Therefore,
$\operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A, J^{2} X\right) \cong \operatorname{Hom}_{\mathbf{S c h}_{k}}\left(\operatorname{Spec} A[t] / t^{3}, \operatorname{Spec} k[x, y] /(x y)\right)$

$$
\begin{aligned}
& \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(k[x, y] /(x y), A[t] / t^{3}\right) \\
& \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}(k[\underline{a}, \underline{b}] / I, A)
\end{aligned}
$$

Jet spaces

Therefore,
$\operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A, J^{2} X\right) \cong \operatorname{Hom}_{\mathbf{S c h}_{k}}\left(\operatorname{Spec} A[t] / t^{3}, \operatorname{Spec} k[x, y] /(x y)\right)$
$\cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(k[x, y] /(x y), A[t] / t^{3}\right)$
$\cong \operatorname{Hom}_{\mathbf{A l g}_{k}}(k[\underline{a}, \underline{b}] / I, A)$
$\cong \operatorname{Hom}_{\operatorname{Sch}_{k}}(\operatorname{Spec} A, \operatorname{Spec} k[\underline{a}, \underline{b}] / I)$.

Jet spaces

Therefore,
$\operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A, J^{2} X\right) \cong \operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A[t] / t^{3}, \operatorname{Spec} k[x, y] /(x y)\right)$

$$
\begin{aligned}
& \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(k[x, y] /(x y), A[t] / t^{3}\right) \\
& \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}(k[\underline{a}, \underline{b}] / I, A) \\
& \cong \operatorname{Hom}_{\mathbf{S c h}_{k}}(\operatorname{Spec} A, \operatorname{Spec} k[\underline{a}, \underline{b}] / I) .
\end{aligned}
$$

By uniqueness up to isomorphism, $J^{2} X \cong \operatorname{Spec} k[\underline{a}, \underline{b}] / I$.

Jet spaces

Therefore,
$\operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A, J^{2} X\right) \cong \operatorname{Hom}_{\mathbf{S c h}_{k}}\left(\operatorname{Spec} A[t] / t^{3}, \operatorname{Spec} k[x, y] /(x y)\right)$

$$
\begin{aligned}
& \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(k[x, y] /(x y), A[t] / t^{3}\right) \\
& \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}(k[\underline{a}, \underline{b}] / I, A) \\
& \cong \operatorname{Hom}_{\mathbf{S c h}_{k}}(\operatorname{Spec} A, \operatorname{Spec} k[\underline{a}, \underline{b}] / I) .
\end{aligned}
$$

By uniqueness up to isomorphism, $J^{2} X \cong \operatorname{Spec} k[\underline{a}, \underline{b}] / I$.
This process gives a general algorithm for computing $J^{m} X$ for $X \in \operatorname{AffSch}_{k}^{f t}$. Specifying an $A[t] / t^{m+1}$-point of X is a map $\varphi: k\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{s}\right) \rightarrow A[t] / t^{m+1}$. Consider the images $\varphi\left(x_{i}\right)$ as $(m+1)$ choices of elements of A and subject to the relations $f_{j}\left(\varphi\left(x_{1}\right), \ldots, \varphi\left(x_{n}\right)\right)=0$. Consequently $J^{m} X$ can be defined as an affine subscheme of $\mathbf{A}^{n(m+1)}$ given by the vanishing of a set of polynomials determined by $f_{j} \mathrm{~s}$.

Jet spaces

... but, where's the ${ }^{+}$magic ${ }^{+}+$?

Jet spaces

... but, where's the ${ }^{+}$magic + ?
Recall our motivating example $X=k[x, y] /(x y)$ with $J^{2} X \cong \operatorname{Spec} k\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right] /\left(a_{0} b_{0}, a_{1} b_{0}+a_{0} b_{1}, a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}\right)$.

Jet spaces

... but, where's the magic + ?
Recall our motivating example $X=k[x, y] /(x y)$ with $J^{2} X \cong \operatorname{Spec} k\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right] /\left(a_{0} b_{0}, a_{1} b_{0}+a_{0} b_{1}, a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}\right)$.
Relabel variables:
$J^{2} X \cong \operatorname{Spec} k\left[x, x^{\prime}, x^{\prime \prime}, y, y^{\prime}, y^{\prime \prime}\right] /\left(x y, x^{\prime} y+x y^{\prime}, x^{\prime \prime} y+x^{\prime} y^{\prime}+x y^{\prime \prime}\right)$.

Jet spaces

... but, where's the + magic $+\uparrow$?
Recall our motivating example $X=k[x, y] /(x y)$ with $J^{2} X \cong \operatorname{Spec} k\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right] /\left(a_{0} b_{0}, a_{1} b_{0}+a_{0} b_{1}, a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}\right)$.
Relabel variables:
$J^{2} X \cong \operatorname{Spec} k\left[x, x^{\prime}, x^{\prime \prime}, y, y^{\prime}, y^{\prime \prime}\right] /\left(x y, x^{\prime} y+x y^{\prime}, x^{\prime \prime} y+x^{\prime} y^{\prime}+x y^{\prime \prime}\right)$.
Derivatives!

Jet spaces

... but, where's the magic + ?
Recall our motivating example $X=k[x, y] /(x y)$ with $J^{2} X \cong \operatorname{Spec} k\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right] /\left(a_{0} b_{0}, a_{1} b_{0}+a_{0} b_{1}, a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}\right)$.
Relabel variables:
$J^{2} X \cong \operatorname{Spec} k\left[x, x^{\prime}, x^{\prime \prime}, y, y^{\prime}, y^{\prime \prime}\right] /\left(x y, x^{\prime} y+x y^{\prime}, x^{\prime \prime} y+x^{\prime} y^{\prime}+x y^{\prime \prime}\right)$.
Derivatives!
In fact, since char $k=0 \neq 2$, a change of variables allows us: $J^{2} X \cong \operatorname{Spec} k\left[x, x^{\prime}, x^{\prime \prime}, y, y^{\prime}, y^{\prime \prime}\right] /\left(x y, x^{\prime} y+x y^{\prime}, x^{\prime \prime} y+2 x^{\prime} y^{\prime}+x y^{\prime \prime}\right)$

Jet spaces

... but, where's the ${ }^{+}$magic $+\begin{gathered}\text { ? }\end{gathered}$
Recall our motivating example $X=k[x, y] /(x y)$ with $J^{2} X \cong \operatorname{Spec} k\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right] /\left(a_{0} b_{0}, a_{1} b_{0}+a_{0} b_{1}, a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}\right)$.
Relabel variables:
$J^{2} X \cong \operatorname{Spec} k\left[x, x^{\prime}, x^{\prime \prime}, y, y^{\prime}, y^{\prime \prime}\right] /\left(x y, x^{\prime} y+x y^{\prime}, x^{\prime \prime} y+x^{\prime} y^{\prime}+x y^{\prime \prime}\right)$.
Derivatives!
In fact, since char $k=0 \neq 2$, a change of variables allows us: $J^{2} X \cong \operatorname{Spec} k\left[x, x^{\prime}, x^{\prime \prime}, y, y^{\prime}, y^{\prime \prime}\right] /\left(x y, x^{\prime} y+x y^{\prime}, x^{\prime \prime} y+2 x^{\prime} y^{\prime}+x y^{\prime \prime}\right)$ $J^{2} X \cong \operatorname{Spec} k\left[x, x^{\prime}, x^{\prime \prime}, y, y^{\prime}, y^{\prime \prime}\right] /\left(x y,(x y)^{\prime},(x y)^{\prime \prime}\right)$

Jet spaces

... but, where's the ${ }^{+}$magic $+\begin{gathered}\text { ? }\end{gathered}$
Recall our motivating example $X=k[x, y] /(x y)$ with $J^{2} X \cong \operatorname{Spec} k\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right] /\left(a_{0} b_{0}, a_{1} b_{0}+a_{0} b_{1}, a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}\right)$.
Relabel variables:
$J^{2} X \cong \operatorname{Spec} k\left[x, x^{\prime}, x^{\prime \prime}, y, y^{\prime}, y^{\prime \prime}\right] /\left(x y, x^{\prime} y+x y^{\prime}, x^{\prime \prime} y+x^{\prime} y^{\prime}+x y^{\prime \prime}\right)$.
Derivatives!
In fact, since char $k=0 \neq 2$, a change of variables allows us: $J^{2} X \cong \operatorname{Spec} k\left[x, x^{\prime}, x^{\prime \prime}, y, y^{\prime}, y^{\prime \prime}\right] /\left(x y, x^{\prime} y+x y^{\prime}, x^{\prime \prime} y+2 x^{\prime} y^{\prime}+x y^{\prime \prime}\right)$ $J^{2} X \cong \operatorname{Spec} k\left[x, x^{\prime}, x^{\prime \prime}, y, y^{\prime}, y^{\prime \prime}\right] /\left(x y,(x y)^{\prime},(x y)^{\prime \prime}\right)$

Jet spaces

So the algorithm for computing $J^{m} X$ for $X \in \operatorname{AffSch}_{k}^{f t}$ is effectively even simpler, at least conceptually. We have shown (proof via one example) that

Jet spaces

So the algorithm for computing $J^{m} X$ for $X \in \operatorname{AffSch}_{k}^{f t}$ is effectively even simpler, at least conceptually. We have shown (proof via one example) that

Theorem. If $X \in \operatorname{AffSch}_{k}^{f t}$, i.e.,

$$
X \cong \operatorname{Spec} k\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{s}\right),
$$

then $J^{m} X$ exists, and moreover,
$J^{m} X \cong \operatorname{Spec}^{k}\left[x_{i}, x_{i}^{\prime}, x_{i}^{\prime \prime}, \ldots, x_{i}^{(m)} \mid 1 \leq i \leq n\right] /\left(f_{j}, f_{j}^{\prime}, f_{j}^{\prime \prime}, \ldots, f_{j}^{(m)} \mid 1 \leq j \leq s\right)^{\prime}$,
where we understand $f_{j}{ }^{(\ell)}$ to mean formal implicit differentiation.

Jet spaces

2 If $J^{m} X$ exists, then given any open subset $V \subseteq X, J^{m} V$ exists and is isomorphic to $\pi_{m}{ }^{-1} V$.

Jet spaces

2 If $J^{m} X$ exists, then given any open subset $V \subseteq X, J^{m} V$ exists and is isomorphic to $\pi_{m}{ }^{-1} V$.
We'll show $\pi_{m}{ }^{-1} V$ satisfies the functor of points that $J^{m} V$ must.

Jet spaces

2 If $J^{m} X$ exists, then given any open subset $V \subseteq X, J^{m} V$ exists and is isomorphic to $\pi_{m}{ }^{-1} V$.
We'll show $\pi_{m}{ }^{-1} V$ satisfies the functor of points that $J^{m} V$ must.
Let $A \in \mathbf{A l g}_{k}$ and consider the natural homomorphism induced by $\pi_{m}, \iota_{A}: \operatorname{Spec} A \rightarrow \operatorname{Spec} A[t] / t^{m+1}$. An m-jet in $J^{m} X$, a map $f: \operatorname{Spec} A[t] / t^{m+1} \rightarrow X$, factors through V if and only if $f \circ \iota_{A}$ factors through V.

Jet spaces

2 If $J^{m} X$ exists, then given any open subset $V \subseteq X, J^{m} V$ exists and is isomorphic to $\pi_{m}{ }^{-1} V$.
We'll show $\pi_{m}{ }^{-1} V$ satisfies the functor of points that $J^{m} V$ must.
Let $A \in \mathbf{A l g}_{k}$ and consider the natural homomorphism induced by $\pi_{m}, \iota_{A}: \operatorname{Spec} A \rightarrow \operatorname{Spec} A[t] / t^{m+1}$. An m-jet in $J^{m} X$, a map $f: \operatorname{Spec} A[t] / t^{m+1} \rightarrow X$, factors through V if and only if $f \circ \iota_{A}$ factors through V.

Jet spaces

2 If $J^{m} X$ exists, then given any open subset $V \subseteq X, J^{m} V$ exists and is isomorphic to $\pi_{m}{ }^{-1} V$.
We'll show $\pi_{m}{ }^{-1} V$ satisfies the functor of points that $J^{m} V$ must.
Let $A \in \mathbf{A l g}_{k}$ and consider the natural homomorphism induced by $\pi_{m}, \iota_{A}: \operatorname{Spec} A \rightarrow \operatorname{Spec} A[t] / t^{m+1}$. An m-jet in $J^{m} X$, a map $f:$ Spec $A[t] / t^{m+1} \rightarrow X$, factors through V if and only if $f \circ \iota_{A}$ factors through V.

Therefore, $\pi_{m}{ }^{-1} V$ is the set of jets in $J^{m} V \subseteq J^{m} X$, i.e., the maps Spec $A[t] / t^{m+1} \rightarrow V$.

Jet spaces

(3) If $X \in \mathbf{S c h}_{k}^{f t}$, then X has an affine cover $U_{1} \cup \cdots \cup U_{r}=X$.

Jet spaces

(3) If $X \in \mathbf{S c h}_{k}^{f t}$, then X has an affine cover $U_{1} \cup \cdots \cup U_{r}=X$.

Yep, sure does!

Jet spaces

(3) If $X \in \mathbf{S c h}_{k}^{f t}$, then X has an affine cover $U_{1} \cup \cdots \cup U_{r}=X$.

Yep, sure does!
(4) For each element of the cover, $J^{m} U_{i}$ exists by (1). Do they glue to form a scheme? Does that scheme satisfy the functor of points that $J^{m} X$ must?

Jet spaces

(3) If $X \in \mathbf{S c h}_{k}^{f t}$, then X has an affine cover $U_{1} \cup \cdots \cup U_{r}=X$.

Yep, sure does!
(4) For each element of the cover, $J^{m} U_{i}$ exists by (1). Do they glue to form a scheme? Does that scheme satisfy the functor of points that $J^{m} X$ must?

We'd like to see the $J^{m} U_{i}$ s glue to form a scheme, so we need to consider intersections on which they'd glue.

Jet spaces

3 If $X \in \mathbf{S c h}_{k}^{f t}$, then X has an affine cover $U_{1} \cup \cdots \cup U_{r}=X$.
Yep, sure does!
(4) For each element of the cover, $J^{m} U_{i}$ exists by (1). Do they glue to form a scheme? Does that scheme satisfy the functor of points that $J^{m} X$ must?

We'd like to see the $J^{m} U_{i}$ s glue to form a scheme, so we need to consider intersections on which they'd glue. Since $J^{m} U_{i}$ exist, for each i there are maps $\pi_{m}^{i}: J^{m} U_{i} \rightarrow U_{i}$, and by (2), an intersection $J^{m}\left(U_{i} \cap U_{j}\right)$ is isomorphic to both $\pi_{m}^{i}{ }^{-1}\left(U_{i} \cap U_{j}\right)$ and $\pi_{m}^{j}{ }^{-1}\left(U_{i} \cap U_{j}\right)$. Thus we have concurrence on intersections and can glue $\left\{J^{m} U_{i}\right\}$ to form a scheme.

Jet spaces

3) If $X \in \boldsymbol{S c h}_{k}^{f t}$, then X has an affine cover $U_{1} \cup \cdots \cup U_{r}=X$.

Yep, sure does!
(4) For each element of the cover, $J^{m} U_{i}$ exists by (1). Do they glue to form a scheme? Does that scheme satisfy the functor of points that $J^{m} X$ must?

We'd like to see the $J^{m} U_{i}$ s glue to form a scheme, so we need to consider intersections on which they'd glue. Since $J^{m} U_{i}$ exist, for each i there are maps $\pi_{m}^{i}: J^{m} U_{i} \rightarrow U_{i}$, and by (2), an intersection $J^{m}\left(U_{i} \cap U_{j}\right)$ is isomorphic to both $\pi_{m}^{i}{ }^{-1}\left(U_{i} \cap U_{j}\right)$ and $\pi_{m}^{j}{ }^{-1}\left(U_{i} \cap U_{j}\right)$. Thus we have concurrence on intersections and can glue $\left\{J^{m} U_{i}\right\}$ to form a scheme.
Does the scheme we've just glued satisfy the functor of points definition that $J^{m} X$ must? Yes, an easy exercise for the reader.

Jet spaces

So jet spaces do exist. Some facts:

Jet spaces

So jet spaces do exist. Some facts:

- If $X \in \operatorname{Var}_{\mathbf{C}}^{s m}$, then $J^{1} X \cong T_{X}$, the total space of the tangent bundle, by definition.

Jet spaces

So jet spaces do exist. Some facts:

- If $X \in \operatorname{Var}_{\mathbf{C}}^{s m}$, then $J^{1} X \cong T_{X}$, the total space of the tangent bundle, by definition.
- If $X \in \mathbf{S c h}_{k}^{f t}$, then $J^{1} X \cong \operatorname{Spec} \operatorname{Sym} \Omega_{X / k}$, where $\Omega_{X / k}$ is the module of Kähler differentials of X over k.

Jet spaces

So jet spaces do exist. Some facts:

- If $X \in \operatorname{Var}_{\mathbf{C}}^{s m}$, then $J^{1} X \cong T_{X}$, the total space of the tangent bundle, by definition.
- If $X \in \operatorname{Sch}_{k}^{f t}$, then $J^{1} X \cong \operatorname{Spec} \operatorname{Sym} \Omega_{X / k}$, where $\Omega_{X / k}$ is the module of Kähler differentials of X over k.
- If $f: X \rightarrow Y$ is a morphism of schemes, then there exists a morphism $J^{m} f: J^{m} X \rightarrow J^{m} Y$ (also written $\left.f_{m}: X_{m} \rightarrow Y_{m}\right)$.

Jet spaces

So jet spaces do exist. Some facts:

- If $X \in \mathbf{V a r}_{\mathbf{C}}^{s m}$, then $J^{1} X \cong T_{X}$, the total space of the tangent bundle, by definition.
- If $X \in \operatorname{Sch}_{k}^{f t}$, then $J^{1} X \cong \operatorname{Spec} \operatorname{Sym} \Omega_{X / k}$, where $\Omega_{X / k}$ is the module of Kähler differentials of X over k.
- If $f: X \rightarrow Y$ is a morphism of schemes, then there exists a morphism $J^{m} f: J^{m} X \rightarrow J^{m} Y$ (also written $\left.f_{m}: X_{m} \rightarrow Y_{m}\right)$.
- If $f: X \rightarrow Y$ is étale, then $J^{m} X \cong X \times_{Y} J^{m} Y$.

Jet spaces

So jet spaces do exist. Some facts:

- If $X \in \mathbf{V a r}_{\mathbf{C}}^{s m}$, then $J^{1} X \cong T_{X}$, the total space of the tangent bundle, by definition.
- If $X \in \operatorname{Sch}_{k}^{f t}$, then $J^{1} X \cong \operatorname{Spec} \operatorname{Sym} \Omega_{X / k}$, where $\Omega_{X / k}$ is the module of Kähler differentials of X over k.
- If $f: X \rightarrow Y$ is a morphism of schemes, then there exists a morphism $J^{m} f: J^{m} X \rightarrow J^{m} Y$ (also written $\left.f_{m}: X_{m} \rightarrow Y_{m}\right)$.
- If $f: X \rightarrow Y$ is étale, then $J^{m} X \cong X \times_{Y} J^{m} Y$.
- If X is a nonsingular variety of dimension n, then $J^{m} X$ is a nonsingular variety of dimension $n(m+1)$.

Jet spaces

So jet spaces do exist. Some facts:

- If $X \in \mathbf{V a r}_{\mathbf{C}}^{s m}$, then $J^{1} X \cong T_{X}$, the total space of the tangent bundle, by definition.
- If $X \in \operatorname{Sch}_{k}^{f t}$, then $J^{1} X \cong \operatorname{Spec} \operatorname{Sym} \Omega_{X / k}$, where $\Omega_{X / k}$ is the module of Kähler differentials of X over k.
- If $f: X \rightarrow Y$ is a morphism of schemes, then there exists a morphism $J^{m} f: J^{m} X \rightarrow J^{m} Y$ (also written $\left.f_{m}: X_{m} \rightarrow Y_{m}\right)$.
- If $f: X \rightarrow Y$ is étale, then $J^{m} X \cong X \times_{Y} J^{m} Y$.
- If X is a nonsingular variety of dimension n, then $J^{m} X$ is a nonsingular variety of dimension $n(m+1)$.
- The maps $\pi_{m, p}: J^{m} X \rightarrow J^{p} X, m>p$, are affine morphisms of k-schemes.

Arc spaces

Arc spaces

Let $X \in \mathbf{S c h}_{k}^{f t}$. We have a diagram of affine morphisms of k schemes

$$
\cdots \rightarrow J^{m} X \rightarrow J^{m-1} X \rightarrow \cdots \rightarrow J^{1} X \rightarrow J^{0} X \cong X
$$

By abstract nonsense, the projective limit of this diagram exists in $\mathbf{S c h}_{k}$.

Arc spaces

Let $X \in \mathbf{S c h}_{k}^{f t}$. We have a diagram of affine morphisms of k schemes

$$
\cdots \rightarrow J^{m} X \rightarrow J^{m-1} X \rightarrow \cdots \rightarrow J^{1} X \rightarrow J^{0} X \cong X .
$$

By abstract nonsense, the projective limit of this diagram exists in $\mathbf{S c h}_{k}$.
Define the arc space of $X, J^{\infty} X$ (also written X_{∞} and sometimes $\mathcal{L}(X)$), to be the projective limit

$$
J^{\infty} X:=\lim _{亡} J^{m} X .
$$

Arc spaces

Arcs of affine schemes can be defined via a functor of points. If $X \in \operatorname{AffSch}_{k}$, then for all $A \in \mathbf{A l g}_{k}$, we have using the functor of points description of jet schemes,

Arc spaces

Arcs of affine schemes can be defined via a functor of points. If $X \in \mathbf{A f f S c h}_{k}$, then for all $A \in \mathbf{A l g}_{k}$, we have using the functor of points description of jet schemes,
$\operatorname{Hom}_{\mathbf{S c h}_{k}}\left(\operatorname{Spec} A, J^{\infty} X\right) \cong \lim _{\rightleftarrows} \operatorname{Hom}_{\mathbf{S c h}_{k}}\left(\operatorname{Spec} A, J^{m} X\right)$

Arc spaces

Arcs of affine schemes can be defined via a functor of points. If $X \in \operatorname{AffSch}_{k}$, then for all $A \in \mathbf{A l g}_{k}$, we have using the functor of points description of jet schemes,
$\operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A, J^{\infty} X\right) \cong \lim _{\leftrightarrows} \operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A, J^{m} X\right)$

$$
\cong \lim _{\rightleftarrows} \operatorname{Hom}_{\mathbf{S c h}_{k}}\left(\operatorname{Spec} A[t] / t^{m+1}, X\right)
$$

Arc spaces

Arcs of affine schemes can be defined via a functor of points. If $X \in \operatorname{AffSch}_{k}$, then for all $A \in \mathbf{A l g}_{k}$, we have using the functor of points description of jet schemes,
$\operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A, J^{\infty} X\right) \cong \lim _{\rightleftarrows} \operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A, J^{m} X\right)$ $\cong \lim _{\leftrightarrows} \operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} A[t] / t^{m+1}, X\right)$
$\cong \operatorname{Hom}_{\mathbf{S c h}_{k}}(\operatorname{Spec} A \llbracket t \rrbracket, X)$.

Arc spaces

Arcs of affine schemes can be defined via a functor of points. If $X \in \mathbf{A f f S c h}_{k}$, then for all $A \in \mathbf{A l g}_{k}$, we have using the functor of points description of jet schemes,

$$
\begin{aligned}
\operatorname{Hom}_{\operatorname{Sch}_{k}}\left(\operatorname{Spec} A, J^{\infty} X\right) & \cong \lim _{\leftrightarrows} \operatorname{Hom}_{\mathbf{S c h}_{k}}\left(\operatorname{Spec} A, J^{m} X\right) \\
& \cong \lim _{\leftrightarrows} \operatorname{Hom}_{\mathbf{S c h}_{k}}\left(\operatorname{Spec} A[t] / t^{m+1}, X\right) \\
& \cong \operatorname{Hom}_{\mathbf{S c h}_{k}}(\operatorname{Spec} A \llbracket t \rrbracket, X) .
\end{aligned}
$$

If $X \in \mathbf{S c h}_{k}$, then any Spec $k[t] / t^{m+1} \rightarrow X$ and Spec $k \llbracket t \rrbracket \rightarrow X$ must factor through any affine open neighborhood of the image of the closed point. Consequently, the elements of $J^{\infty} X(k)$ correspond to arcs in X; i.e., we have a bijection

$$
\operatorname{Hom}_{\mathbf{S c h}_{k}}\left(\operatorname{Spec} k, J^{\infty} X\right) \cong \operatorname{Hom}_{\mathbf{S c h}_{k}}(\operatorname{Spec} k \llbracket t \rrbracket, X)
$$

Arc spaces

Our X is always of finite type, but see that $J^{\infty} X$ rarely is. If $X \in \mathbf{A f f S c h}_{k}^{f t}$, using our previous theorem, we have

Arc spaces

Our X is always of finite type, but see that $J^{\infty} X$ rarely is. If $X \in \operatorname{AffSch}_{k}^{f t}$, using our previous theorem, we have Theorem. If $X \in \operatorname{AffSch}_{k}^{f t}$, then

$$
J^{\infty} X \cong \operatorname{Spec} k\left[x_{i}, x_{i}{ }^{\prime}, x_{i}{ }^{\prime \prime}, \ldots \mid 1 \leq i \leq n\right] /\left(f_{j}, f_{j}{ }^{\prime}, f_{j}{ }^{\prime \prime}, \ldots \mid 1 \leq j \leq s\right) .
$$

Arc spaces

Our X is always of finite type, but see that $J^{\infty} X$ rarely is. If $X \in \operatorname{AffSch}_{k}^{f t}$, using our previous theorem, we have Theorem. If $X \in \operatorname{AffSch}_{k}^{f t}$, then

$$
J^{\infty} X \cong \operatorname{Spec} k\left[x_{i}, x_{i}{ }^{\prime}, x_{i}{ }^{\prime \prime}, \ldots \mid 1 \leq i \leq n\right] /\left(f_{j}, f_{j}{ }^{\prime}, f_{j}{ }^{\prime \prime}, \ldots \mid 1 \leq j \leq s\right) .
$$

Other facts:

Arc spaces

Our X is always of finite type, but see that $J^{\infty} X$ rarely is. If $X \in \operatorname{AffSch}_{k}^{f t}$, using our previous theorem, we have Theorem. If $X \in \operatorname{AffSch}_{k}^{f t}$, then

$$
J^{\infty} X \cong \operatorname{Spec} k\left[x_{i}, x_{i}{ }^{\prime}, x_{i}{ }^{\prime \prime}, \ldots \mid 1 \leq i \leq n\right] /\left(f_{j}, f_{j}{ }^{\prime}, f_{j}{ }^{\prime \prime}, \ldots \mid 1 \leq j \leq s\right) .
$$

Other facts:

- By construction there are natural affine morphisms $\psi_{m}: J^{\infty} X \rightarrow J^{m} X$.

Arc spaces

Our X is always of finite type, but see that $J^{\infty} X$ rarely is. If $X \in \operatorname{AffSch}_{k}^{f t}$, using our previous theorem, we have Theorem. If $X \in \operatorname{AffSch}_{k}^{f t}$, then

$$
J^{\infty} X \cong \operatorname{Spec} k\left[x_{i}, x_{i}{ }^{\prime}, x_{i}{ }^{\prime \prime}, \ldots \mid 1 \leq i \leq n\right] /\left(f_{j}, f_{j}{ }^{\prime}, f_{j}{ }^{\prime \prime}, \ldots \mid 1 \leq j \leq s\right) .
$$

Other facts:

- By construction there are natural affine morphisms $\psi_{m}: J^{\infty} X \rightarrow J^{m} X$.
- If $f: X \rightarrow Y$ is étale, then $J^{\infty} X \cong X \times_{Y} J^{\infty} Y$.

Arc spaces

Our X is always of finite type, but see that $J^{\infty} X$ rarely is. If $X \in \operatorname{AffSch}_{k}^{f t}$, using our previous theorem, we have

Theorem. If $X \in \operatorname{AffSch}_{k}^{f t}$, then

$$
J^{\infty} X \cong \operatorname{Spec} k\left[x_{i}, x_{i}{ }^{\prime}, x_{i}{ }^{\prime \prime}, \ldots \mid 1 \leq i \leq n\right] /\left(f_{j}, f_{j}{ }^{\prime}, f_{j}{ }^{\prime \prime}, \ldots \mid 1 \leq j \leq s\right) .
$$

Other facts:

- By construction there are natural affine morphisms $\psi_{m}: J^{\infty} X \rightarrow J^{m} X$.
- If $f: X \rightarrow Y$ is étale, then $J^{\infty} X \cong X \times_{Y} J^{\infty} Y$.
- Theorem [Kolchin]. If X is a variety, then $J^{\infty} X$ is irreducible. (X nonsingular is easy, X singular requires resolution of singularities ($\operatorname{char} k=0$))

Cylinders

Cylinders

A subset S of a scheme Y is said to be constructible if it is a finite union of locally closed subsets.

Cylinders

A subset S of a scheme Y is said to be constructible if it is a finite union of locally closed subsets.

A cylinder in $J^{\infty} X$ is a subset of the form $C=\psi_{m}{ }^{-1}(S)$ for some $S \subseteq J^{m} X$ a constructible subset.

Cylinders

A subset S of a scheme Y is said to be constructible if it is a finite union of locally closed subsets.

A cylinder in $J^{\infty} X$ is a subset of the form $C=\psi_{m}{ }^{-1}(S)$ for some $S \subseteq J^{m} X$ a constructible subset.

We say a cylinder $C=\psi_{m}{ }^{-1}(S)$ is closed / open / locally closed / irreducible if S is.

Cylinders

A subset S of a scheme Y is said to be constructible if it is a finite union of locally closed subsets.

A cylinder in $J^{\infty} X$ is a subset of the form $C=\psi_{m}{ }^{-1}(S)$ for some $S \subseteq J^{m} X$ a constructible subset.

We say a cylinder $C=\psi_{m}{ }^{-1}(S)$ is closed / open / locally closed / irreducible if S is.

Let $C=\psi_{m}^{-1}(S)$ be a cylinder. We define

$$
\operatorname{codim}(C):=\operatorname{codim}\left(S, J^{m} X\right)=(m+1) n-\operatorname{dim}(S)
$$

(independent of m).

Cylinders

Let X be nonsingular. Facts about cylinders:

Cylinders

Let X be nonsingular. Facts about cylinders:
(1) If $C=\psi_{m}^{-1}(S)$, then given an irreducible decomposition $S=S_{1} \cup \cdots \cup S_{r}$, we get $C=\psi_{m}{ }^{-1}\left(S_{1}\right) \cup \cdots \cup \psi_{m}{ }^{-1}\left(S_{r}\right)$.

Cylinders

Let X be nonsingular. Facts about cylinders:
(1) If $C=\psi_{m}^{-1}(S)$, then given an irreducible decomposition $S=S_{1} \cup \cdots \cup S_{r}$, we get $C=\psi_{m}^{-1}\left(S_{1}\right) \cup \cdots \cup \psi_{m}{ }^{-1}\left(S_{r}\right)$.
(2) In particular, if S has a finite irreducible decomposition, then $C=\psi_{m}{ }^{-1}(S)$ has a finite irreducible decomposition.

Cylinders

Let X be nonsingular. Facts about cylinders:
(1) If $C=\psi_{m}^{-1}(S)$, then given an irreducible decomposition $S=S_{1} \cup \cdots \cup S_{r}$, we get $C=\psi_{m}^{-1}\left(S_{1}\right) \cup \cdots \cup \psi_{m}{ }^{-1}\left(S_{r}\right)$.
(2) In particular, if S has a finite irreducible decomposition, then $C=\psi_{m}{ }^{-1}(S)$ has a finite irreducible decomposition.
3 If $C=\psi_{m}^{-1}(S)$ is a cylinder, then $\bar{C}=\psi_{m}{ }^{-1}(\bar{S})$ is a cylinder.

Cylinders

Let X be nonsingular. Facts about cylinders:
(1) If $C=\psi_{m}^{-1}(S)$, then given an irreducible decomposition $S=S_{1} \cup \cdots \cup S_{r}$, we get $C=\psi_{m}^{-1}\left(S_{1}\right) \cup \cdots \cup \psi_{m}{ }^{-1}\left(S_{r}\right)$.
(2) In particular, if S has a finite irreducible decomposition, then $C=\psi_{m}{ }^{-1}(S)$ has a finite irreducible decomposition.
(3) If $C=\psi_{m}^{-1}(S)$ is a cylinder, then $\bar{C}=\psi_{m}{ }^{-1}(\bar{S})$ is a cylinder.
(4) If C^{\prime} is an irreducible component of a cylinder C, then there does not exist a proper closed subset $Z \subseteq X$ such that $C^{\prime} \subseteq J^{\infty} Z$.

Cylinders

Let X be nonsingular. Facts about cylinders:
(1) If $C=\psi_{m}^{-1}(S)$, then given an irreducible decomposition $S=S_{1} \cup \cdots \cup S_{r}$, we get $C=\psi_{m}^{-1}\left(S_{1}\right) \cup \cdots \cup \psi_{m}{ }^{-1}\left(S_{r}\right)$.
(2) In particular, if S has a finite irreducible decomposition, then $C=\psi_{m}{ }^{-1}(S)$ has a finite irreducible decomposition.
3 If $C=\psi_{m}{ }^{-1}(S)$ is a cylinder, then $\bar{C}=\psi_{m}{ }^{-1}(\bar{S})$ is a cylinder.
4) If C^{\prime} is an irreducible component of a cylinder C, then there does not exist a proper closed subset $Z \subseteq X$ such that $C^{\prime} \subseteq J^{\infty} Z$.
If X is singular, bullets (1) and (4) fail, while (3) is an open problem.

Cylinders

Important example of cylinders:

Cylinders

Important example of cylinders:
Let $Z \subseteq X$ be a proper closed subscheme. Define a function $\operatorname{ord}_{Z}: J^{\infty} X \rightarrow \mathbf{N} \cup\{0, \infty\}$ given by, if $\gamma: \operatorname{Spec} k \llbracket t \rrbracket \rightarrow X \in J^{\infty} X$, then the inverse image of the ideal defining Z is an ideal in $k \llbracket t \rrbracket$ generated by $t^{\operatorname{ord}_{Z}(\gamma)}$.

Cylinders

Important example of cylinders:
Let $Z \subseteq X$ be a proper closed subscheme. Define a function $\operatorname{ord}_{Z}: J^{\infty} X \rightarrow \mathbf{N} \cup\{0, \infty\}$ given by, if $\gamma: \operatorname{Spec} k \llbracket t \rrbracket \rightarrow X \in J^{\infty} X$, then the inverse image of the ideal defining Z is an ideal in $k \llbracket t \rrbracket$ generated by $t^{\operatorname{ord}_{Z}(\gamma)}$.
The contact locus of order m with Z is defined to be the set Cont $^{m}(Z):=\operatorname{ord}_{Z}^{-1}(m)$. Similarly, Cont $\geq m(Z):=\operatorname{ord}_{Z}^{-1}(\geq m)$.

Cylinders

Important example of cylinders:
Let $Z \subseteq X$ be a proper closed subscheme. Define a function $\operatorname{ord}_{Z}: J^{\infty} X \rightarrow \mathbf{N} \cup\{0, \infty\}$ given by, if $\gamma: \operatorname{Spec} k \llbracket t \rrbracket \rightarrow X \in J^{\infty} X$, then the inverse image of the ideal defining Z is an ideal in $k \llbracket t \rrbracket$ generated by $t^{\operatorname{ord}_{Z}(\gamma)}$.
The contact locus of order m with Z is defined to be the set Cont $^{m}(Z):=\operatorname{ord}_{Z}^{-1}(m)$. Similarly, Cont $\geq m(Z):=\operatorname{ord}_{Z}^{-1}(\geq m)$. One can check that

$$
\operatorname{Cont}^{\geq m}(Z)=\psi_{m-1}^{-1}\left(J^{m-1} Z\right),
$$

so Cont ${ }^{\geq m}(Z)$ is a closed cylinder. Also Cont $^{m}(Z)$ is a locally closed cylinder.

The Birational Transformation Theorem

The Birational Transformation Theorem

The Birational Transformation Theorem [Kontsevich] describes the behavior of contact loci defined by a particular effective divisor $K_{X / Y} \subseteq X$ for a fixed map $f: X \rightarrow Y$. We will state it, then use it to calculate log canonical thresholds using jets and arcs.

The Birational Transformation Theorem

The Birational Transformation Theorem [Kontsevich] describes the behavior of contact loci defined by a particular effective divisor $K_{X / Y} \subseteq X$ for a fixed map $f: X \rightarrow Y$. We will state it, then use it to calculate log canonical thresholds using jets and arcs.

Setup: let $f: X \rightarrow Y$ be a proper birational morphism. Let $\operatorname{dim} X=\operatorname{dim} Y=n$. Give X and Y local coordinates at $P \in X$ and $f(P) \in Y$; call them x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n}. Define the relative canonical divisor $K_{X / Y}$ to be the unique effective divisor obtained by local equation at $P \in X$ the determinant of the Jacobian

$$
\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{1}} \\
\frac{\partial f_{1}}{\partial x_{2}} & & & \\
\vdots & & \ddots & \vdots \\
\frac{\partial f_{1}}{\partial x_{n}} & & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right]
$$

where $f_{i} \in k \llbracket x_{1}, \ldots, x_{n} \rrbracket$ is given by $f^{*}\left(y_{i}\right)=f_{i}\left(x_{1}, \ldots, x_{n}\right)$.

The Birational Transformation Theorem

Setup (cont.): Define a cylinder $C^{(e)}:=\operatorname{Cont}^{e}\left(K_{X / Y}\right)$ for $e \in \mathbf{N}$.

The Birational Transformation Theorem

Setup (cont.): Define a cylinder $C^{(e)}:=\operatorname{Cont}^{e}\left(K_{X / Y}\right)$ for $e \in \mathbf{N}$. Write $\psi_{m}^{X}: J^{\infty} X \rightarrow J^{m} X$ and $\psi_{m}^{Y}: J^{\infty} Y \rightarrow J^{m} Y$. Write $\pi_{m, p}^{X}: J^{m} X \rightarrow J^{p} X$ and $\pi_{m, p}^{Y}: J^{m} Y \rightarrow J^{p} Y$.

The Birational Transformation Theorem

Setup (cont.): Define a cylinder $C^{(e)}:=\operatorname{Cont}^{e}\left(K_{X / Y}\right)$ for $e \in \mathbf{N}$. Write $\psi_{m}^{X}: J^{\infty} X \rightarrow J^{m} X$ and $\psi_{m}^{Y}: J^{\infty} Y \rightarrow J^{m} Y$. Write $\pi_{m, p}^{X}: J^{m} X \rightarrow J^{p} X$ and $\pi_{m, p}^{Y}: J^{m} Y \rightarrow J^{p} Y$.

Theorem [Kontsevich]. Given the prior setup, let $m \geq 2 e$.
(1) Let $\gamma_{m}, \gamma_{m}^{\prime} \in J^{m} X$. If $\gamma_{m} \in \psi_{m}^{X}\left(C^{(e)}\right)$ and $J^{m} f\left(\gamma_{m}\right)=J^{m} f\left(\gamma_{m}^{\prime}\right)$, then

$$
\pi_{m, m-e}^{X}\left(\gamma_{m}\right)=\pi_{m, m-e}^{X}\left(\gamma_{m}^{\prime}\right)
$$

(2) The induced map

$$
\psi_{m}^{X}\left(C^{(e)}\right) \rightarrow J^{m} f\left(\psi_{m}^{X}\left(C^{(e)}\right)\right)
$$

is piecewise trivial with fiber \mathbf{A}^{e}.

Computing log canonical thresholds using jets and arcs

Computing log canonical thresholds using jets and arcs

Recall: let X be a nonsingular variety and $Y \subseteq X$ a proper closed subscheme. Let $f: X^{\prime} \rightarrow X$ be a log resolution of (X, Y); i.e., f is proper and birational, X^{\prime} is nonsingular, and $f^{-1}(Y)+K_{X^{\prime} / X}$ has simple normal crossings. We have seen that the log canonical threshold can be defined as

$$
\operatorname{lct}(X, Y):=\min _{i} \frac{k_{i}+1}{a_{i}},
$$

where

$$
f^{-1}(Y)=\sum_{i=1}^{s} a_{i} E_{i} \text { and } K_{X^{\prime} / X}=\sum_{i=1}^{s} k_{i} E_{i} .
$$

Computing log canonical thresholds using jets and arcs

Theorem [Ein-Lazarsfeld-Mustaţă]. Let $f: X^{\prime} \rightarrow X$ be a log resolution of (X, Y) and as before write $f^{-1}(Y)=\sum a_{i} E_{i}$ and $K_{X^{\prime} / X}=\sum k_{i} E_{i}$. WLOG, f is an isomorphism over $X \backslash Y$, so $f^{-1}(Y)$ is effective. For all $m \in \mathbf{N}$,

$$
\operatorname{codim}\left(\operatorname{Cont}^{m}(Y)\right)=\min _{\nu} \sum_{i=1}^{s}\left(k_{i}+1\right) \nu_{i}
$$

where $\nu=\left(\nu_{i}\right) \in \mathbf{N}^{s}$ such that

$$
\sum_{i=1}^{s} a_{i} \nu_{i}=m \text { and } \bigcap_{\nu_{i} \geq 1} E_{i} \neq \emptyset
$$

Computing log canonical thresholds using jets and arcs

Proof outline.

Computing log canonical thresholds using jets and arcs

Proof outline.

1 First decompose $f^{-1}\left(\operatorname{Cont}^{m}(Y)\right)$ into a finite disjoint union.

Computing log canonical thresholds using jets and arcs

Proof outline.

1 First decompose $f^{-1}\left(\operatorname{Cont}^{m}(Y)\right)$ into a finite disjoint union.
2 Next compute the codimension of each piece.

Computing log canonical thresholds using jets and arcs

Proof outline.

1 First decompose $f^{-1}\left(\operatorname{Cont}^{m}(Y)\right)$ into a finite disjoint union.
2 Next compute the codimension of each piece.
3 After that use Kontsevich's Birational Transformation Theorem to compute the contact loci of the relative canonical divisor $K_{X^{\prime} / X}$.

Computing log canonical thresholds using jets and arcs

Proof outline.

1 First decompose $f^{-1}\left(\operatorname{Cont}^{m}(Y)\right)$ into a finite disjoint union.
2 Next compute the codimension of each piece.
3 After that use Kontsevich's Birational Transformation Theorem to compute the contact loci of the relative canonical divisor $K_{X^{\prime} / X}$.
4 Put the pieces together to complete the theorem.

Computing log canonical thresholds using jets and arcs

(1) First decompose $f^{-1}\left(\operatorname{Cont}^{m}(Y)\right)$ into a finite disjoint union.

Computing log canonical thresholds using jets and arcs

(1) First decompose $f^{-1}\left(\operatorname{Cont}^{m}(Y)\right)$ into a finite disjoint union.
The decomposition is

$$
\begin{aligned}
f^{-1}\left(\operatorname{Cont}^{m}(Y)\right) & =\operatorname{Cont}^{m}\left(f^{-1}(Y)\right) \\
& =\operatorname{Cont}^{m}\left(\sum_{i=1}^{s} a_{i} E_{i}\right) \\
& =\coprod_{\nu}\left(\bigcap_{i=1}^{s} \operatorname{Cont}^{\nu_{i}}\left(E_{i}\right)\right),
\end{aligned}
$$

where $\nu=\left(\nu_{i}\right)$ and

$$
\sum_{i=1}^{s} a_{i} \nu_{i}=m
$$

We'll write $\operatorname{Cont}^{\nu}(E)$ for $\bigcap \operatorname{Cont}^{\nu_{i}}\left(E_{i}\right)$.

Computing log canonical thresholds using jets and arcs

2 Next compute the codimension of each piece.

Computing log canonical thresholds using jets and arcs

2 Next compute the codimension of each piece.
Our decomposition is $f^{-1}\left(\operatorname{Cont}^{m}(Y)\right)=\coprod \operatorname{Cont}^{\nu}(E)$. Since $\sum E_{i}$ has simple normal crossings, to compute codim $\left(\operatorname{Cont}^{\nu}(E)\right)$, we may take an étale morphism to \mathbf{A}^{n} so that E_{i} is a hyperplane in an affine space. Using this we see that $\operatorname{Cont}^{\nu}(E) \neq \emptyset$ if and only if

$$
\bigcap_{\nu_{i} \geq 1} E_{i} \neq \emptyset
$$

and in this case

$$
\operatorname{codim}\left(\operatorname{Cont}^{\nu}(E)\right)=\sum_{i=1}^{s} \nu_{i}
$$

Computing log canonical thresholds using jets and arcs

(3) After that use Kontsevich's Birational Transformation Theorem to compute the contact loci of the relative canonical divisor $K_{X^{\prime} / X}$.

Computing log canonical thresholds using jets and arcs

(3) After that use Kontsevich's Birational Transformation Theorem to compute the contact loci of the relative canonical divisor $K_{X^{\prime} / X}$.
Note that $\operatorname{Cont}^{\nu}(E) \subseteq \operatorname{Cont}^{e}\left(K_{X^{\prime} / X}\right)$ where $e:=\sum k_{i} v_{i}$. Let $p \gg 0$. By [Kontsevich] (1), $\psi_{p}^{X}\left(\operatorname{Cont}^{\nu}(E)\right)$ is a union of fibers of $J^{p} f$. By [Kontsevich] (2),

$$
\operatorname{codim}\left(J^{\infty} f\left(\operatorname{Cont}^{\nu}(E)\right)\right)=\sum_{i=1}^{s}\left(k_{i}+1\right) \nu_{i} .
$$

Computing log canonical thresholds using jets and arcs

(4) Put the pieces together to complete the theorem.

Computing log canonical thresholds using jets and arcs

(4) Put the pieces together to complete the theorem. Since $f^{-1}\left(\operatorname{Cont}^{m}(Y)\right)=\coprod \operatorname{Cont}^{\nu}(E)$, we also have a decomposition $\operatorname{Cont}^{m}(Y)=\coprod J^{\infty} f\left(\operatorname{Cont}^{\nu}(E)\right)\left(\right.$ Proposition: $J^{\infty} f$ is a bijection over Cont $\left.{ }^{m}(Y)\right)$. Therefore,

$$
\begin{aligned}
\operatorname{codim}\left(\operatorname{Cont}^{m}(Y)\right) & =\min _{\nu} \operatorname{codim}\left(J^{\infty} f\left(\operatorname{Cont}^{\nu}(E)\right)\right) \\
& =\min _{\nu} \sum_{i=1}^{s}\left(k_{i}+1\right) \nu_{i}
\end{aligned}
$$

as desired.

Computing log canonical thresholds using jets and arcs

Corollary. If X is a nonsingular variety and $Y \subseteq X$ is a proper closed subscheme, then

$$
\operatorname{lct}(X, Y):=\min _{i} \frac{k_{i}+1}{a_{i}}=\operatorname{dim}(X)-\max _{m} \frac{\operatorname{dim}\left(J^{m} Y\right)}{m+1}
$$

Computing log canonical thresholds using jets and arcs

Corollary. If X is a nonsingular variety and $Y \subseteq X$ is a proper closed subscheme, then

$$
\operatorname{lct}(X, Y):=\min _{i} \frac{k_{i}+1}{a_{i}}=\operatorname{dim}(X)-\max _{m} \frac{\operatorname{dim}\left(J^{m} Y\right)}{m+1}
$$

Proof.

Computing log canonical thresholds using jets and arcs

Corollary. If X is a nonsingular variety and $Y \subseteq X$ is a proper closed subscheme, then

$$
\operatorname{lct}(X, Y):=\min _{i} \frac{k_{i}+1}{a_{i}}=\operatorname{dim}(X)-\max _{m} \frac{\operatorname{dim}\left(J^{m} Y\right)}{m+1}
$$

Proof.

[ELM] implies that $\operatorname{codim}\left(\right.$ Cont $\left.{ }^{\geq m}(Y)\right)=\min _{\nu} \sum\left(k_{i}+1\right) \nu_{i}$, where $\nu=\left(\nu_{i}\right)$ satisfies $m \leq \sum a_{i} \nu_{i}$.

Computing log canonical thresholds using jets and arcs

Corollary. If X is a nonsingular variety and $Y \subseteq X$ is a proper closed subscheme, then

$$
\operatorname{lct}(X, Y):=\min _{i} \frac{k_{i}+1}{a_{i}}=\operatorname{dim}(X)-\max _{m} \frac{\operatorname{dim}\left(J^{m} Y\right)}{m+1}
$$

Proof.

[ELM] implies that $\operatorname{codim}\left(\right.$ Cont $\left.^{\geq m}(Y)\right)=\min _{\nu} \sum\left(k_{i}+1\right) \nu_{i}$, where $\nu=\left(\nu_{i}\right)$ satisfies $m \leq \sum a_{i} \nu_{i}$. For all $i, \operatorname{lct}(X, Y) a_{i} \leq k_{i}+1$ by definition.

Computing log canonical thresholds using jets and arcs

Corollary. If X is a nonsingular variety and $Y \subseteq X$ is a proper closed subscheme, then

$$
\operatorname{lct}(X, Y):=\min _{i} \frac{k_{i}+1}{a_{i}}=\operatorname{dim}(X)-\max _{m} \frac{\operatorname{dim}\left(J^{m} Y\right)}{m+1} .
$$

Proof (cont.).
Hence

$$
\begin{aligned}
m \operatorname{lct}(X, Y) & \leq \operatorname{codim}\left(\operatorname{Cont}{ }^{\geq m}(Y)\right) \\
& =\operatorname{codim}\left(J^{m-1} Y, J^{m-1} X\right) \\
& =m \operatorname{dim}(X)-\operatorname{dim}\left(J^{m-1} Y\right)
\end{aligned}
$$

Computing log canonical thresholds using jets and arcs

Corollary. If X is a nonsingular variety and $Y \subseteq X$ is a proper closed subscheme, then

$$
\operatorname{lct}(X, Y):=\min _{i} \frac{k_{i}+1}{a_{i}}=\operatorname{dim}(X)-\max _{m} \frac{\operatorname{dim}\left(J^{m} Y\right)}{m+1}
$$

Proof (cont.).
Let ℓ be the index that realizes $\operatorname{lct}(X, Y)=\left(k_{\ell}+1\right) / a_{\ell}$. Let ν be $\nu_{\ell} \geq 1$ and $\nu_{i}=0$ for $i \neq \ell$, then

$$
\operatorname{codim}\left(\operatorname{Cont} \geq^{\geq a_{\ell} \nu_{\ell}}(Y)\right) \leq a_{\ell} \nu_{\ell} \operatorname{lct}(X, Y)
$$

Computing log canonical thresholds using jets and arcs

Corollary. If X is a nonsingular variety and $Y \subseteq X$ is a proper closed subscheme, then

$$
\operatorname{lct}(X, Y):=\min _{i} \frac{k_{i}+1}{a_{i}}=\operatorname{dim}(X)-\max _{m} \frac{\operatorname{dim}\left(J^{m} Y\right)}{m+1} .
$$

Proof (cont.).
Let ℓ be the index that realizes $\operatorname{lct}(X, Y)=\left(k_{\ell}+1\right) / a_{\ell}$. Let ν be $\nu_{\ell} \geq 1$ and $\nu_{i}=0$ for $i \neq \ell$, then

$$
\operatorname{codim}\left(\operatorname{Cont}{ }^{\geq a_{\ell} \nu_{\ell}}(Y)\right) \leq a_{\ell} \nu_{\ell} \operatorname{lct}(X, Y)
$$

Thus $\operatorname{dim}\left(J^{m-1} Y\right) \geq m(\operatorname{dim}(X)-\operatorname{lct}(X, Y))$ if a_{ℓ} divides m. Rearrange and the result is shown.

Computing log canonical thresholds using jets and arcs

Example. We've already seen that $\operatorname{lct}\left(\mathbf{A}^{2}, V(x y)\right)=1$ since $V(x y)$ has s.n.c. Via the corollary, we also see

Computing log canonical thresholds using jets and arcs

Example. We've already seen that $\operatorname{lct}\left(\mathbf{A}^{2}, V(x y)\right)=1$ since $V(x y)$ has s.n.c. Via the corollary, we also see

$$
\operatorname{lct}\left(\mathbf{A}^{2}, V(x y)\right)=\operatorname{dim}\left(\mathbf{A}^{2}\right)-\max _{m} \frac{\operatorname{dim}\left(J^{m} V(x y)\right)}{m+1}
$$

Computing log canonical thresholds using jets and arcs

Example. We've already seen that $\operatorname{lct}\left(\mathbf{A}^{2}, V(x y)\right)=1$ since $V(x y)$ has s.n.c. Via the corollary, we also see

$$
\operatorname{lct}\left(\mathbf{A}^{2}, V(x y)\right)=\operatorname{dim}\left(\mathbf{A}^{2}\right)-\max _{m} \frac{\operatorname{dim}\left(J^{m} V(x y)\right)}{m+1}
$$

A quick jaunt to Macaulay2 confirms

$$
\begin{aligned}
& \operatorname{dim}\left(J^{0} V(x y)\right)=\operatorname{dim}(V(x y))=1 \\
& \operatorname{dim}\left(J^{1} V(x y)\right)=\operatorname{dim}\left(V\left(x y,(x y)^{\prime}\right)\right)=2 \\
& \operatorname{dim}\left(J^{2} V(x y)\right)=\operatorname{dim}\left(V\left(x y,(x y)^{\prime},(x y)^{\prime \prime}\right)=3\right.
\end{aligned}
$$

Computing log canonical thresholds using jets and arcs

Example. We've already seen that $\operatorname{lct}\left(\mathbf{A}^{2}, V(x y)\right)=1$ since $V(x y)$ has s.n.c. Via the corollary, we also see

$$
\operatorname{lct}\left(\mathbf{A}^{2}, V(x y)\right)=\operatorname{dim}\left(\mathbf{A}^{2}\right)-\max _{m} \frac{\operatorname{dim}\left(J^{m} V(x y)\right)}{m+1}
$$

A quick jaunt to Macaulay2 confirms

$$
\begin{aligned}
\operatorname{dim}\left(J^{0} V(x y)\right) & =\operatorname{dim}(V(x y))=1 \\
\operatorname{dim}\left(J^{1} V(x y)\right) & =\operatorname{dim}\left(V\left(x y,(x y)^{\prime}\right)\right)=2 \\
\operatorname{dim}\left(J^{2} V(x y)\right) & =\operatorname{dim}\left(V\left(x y,(x y)^{\prime},(x y)^{\prime \prime}\right)=3\right.
\end{aligned}
$$

So

$$
\operatorname{lct}\left(\mathbf{A}^{2}, V(x y)\right)=2-\max \left\{\frac{1}{1}, \frac{2}{2}, \frac{3}{3}, \ldots\right\}=2-1=1
$$

Computing log canonical thresholds using jets and arcs

Example. We've also seen $\operatorname{lct}\left(\mathbf{A}^{2}, V\left(x^{2}-y^{3}\right)\right)=5 / 6$.

Computing log canonical thresholds using jets and arcs

Example. We've also seen $\operatorname{lct}\left(\mathbf{A}^{2}, V\left(x^{2}-y^{3}\right)\right)=5 / 6$.

$$
\operatorname{lct}\left(\mathbf{A}^{2}, V\left(x^{2}-y^{3}\right)\right)=\operatorname{dim}\left(\mathbf{A}^{2}\right)-\max _{m} \frac{\operatorname{dim}\left(J^{m} V\left(x^{2}-y^{3}\right)\right)}{m+1}
$$

Computing log canonical thresholds using jets and arcs

Example. We've also seen $\operatorname{lct}\left(\mathbf{A}^{2}, V\left(x^{2}-y^{3}\right)\right)=5 / 6$.

$$
\operatorname{lct}\left(\mathbf{A}^{2}, V\left(x^{2}-y^{3}\right)\right)=\operatorname{dim}\left(\mathbf{A}^{2}\right)-\max _{m} \frac{\operatorname{dim}\left(J^{m} V\left(x^{2}-y^{3}\right)\right)}{m+1}
$$

We calculate

$$
\begin{aligned}
& \operatorname{dim}\left(J^{0} V\left(x^{2}-y^{3}\right)\right)=1, \\
& \operatorname{dim}\left(J^{1} V\left(x^{2}-y^{3}\right)\right)=2, \\
& \operatorname{dim}\left(J^{2} V\left(x^{2}-y^{3}\right)\right)=3,
\end{aligned}
$$

Computing log canonical thresholds using jets and arcs

Example. We've also seen $\operatorname{lct}\left(\mathbf{A}^{2}, V\left(x^{2}-y^{3}\right)\right)=5 / 6$.

$$
\operatorname{lct}\left(\mathbf{A}^{2}, V\left(x^{2}-y^{3}\right)\right)=\operatorname{dim}\left(\mathbf{A}^{2}\right)-\max _{m} \frac{\operatorname{dim}\left(J^{m} V\left(x^{2}-y^{3}\right)\right)}{m+1}
$$

We calculate

$$
\begin{gathered}
\operatorname{dim}\left(J^{0} V\left(x^{2}-y^{3}\right)\right)=1, \\
\operatorname{dim}\left(J^{1} V\left(x^{2}-y^{3}\right)\right)=2, \\
\operatorname{dim}\left(J^{2} V\left(x^{2}-y^{3}\right)\right)=3, \\
\vdots \\
\operatorname{dim}\left(J^{5} V\left(x^{2}-y^{3}\right)\right)=7,
\end{gathered}
$$

Computing log canonical thresholds using jets and arcs

Example. We've also seen $\operatorname{lct}\left(\mathbf{A}^{2}, V\left(x^{2}-y^{3}\right)\right)=5 / 6$.

$$
\operatorname{lct}\left(\mathbf{A}^{2}, V\left(x^{2}-y^{3}\right)\right)=\operatorname{dim}\left(\mathbf{A}^{2}\right)-\max _{m} \frac{\operatorname{dim}\left(J^{m} V\left(x^{2}-y^{3}\right)\right)}{m+1}
$$

We calculate

$$
\begin{gathered}
\operatorname{dim}\left(J^{0} V\left(x^{2}-y^{3}\right)\right)=1, \\
\operatorname{dim}\left(J^{1} V\left(x^{2}-y^{3}\right)\right)=2, \\
\operatorname{dim}\left(J^{2} V\left(x^{2}-y^{3}\right)\right)=3, \\
\vdots \\
\operatorname{dim}\left(J^{5} V\left(x^{2}-y^{3}\right)\right)=7,
\end{gathered}
$$

so
$\operatorname{lct}\left(\mathbf{A}^{2}, V\left(x^{2}-y^{3}\right)\right)=2-\max \left\{1,1,1 \ldots, \frac{7}{6}, \ldots\right\}=2-\frac{7}{6}=\frac{5}{6}$.

Computing log canonical thresholds using jets and arcs

Feel free to double check my computation of $\operatorname{dim}\left(J^{5} V\left(x^{2}-y^{3}\right)\right)$ in M2:

```
i1 : R=QQ[x0, x1, x2, x3, x4, x5,y0,y1,y2,y3,y4,y5]
i2 : I=ideal ((x0) ^2-(y0)^3,
    2*x0*x1-3*(y0) ^ 2*y1,
    2*x0*x2+2*(x1) ^2-3*(y0)^2*y2-6*y0* (y1)^2,
    2*x0*x3+6*x1*x2-3*(y0)^2*y3-6* (y1) ^3-18*y0*y1*y2,
    2*x0*x4+6*(x2)^2+8*x3*x1-3*y4*(y0)^2-18*y0*(y2) ^2-24*y3*y0*y1-36*(y1)^2*y2,
    2*x0*x5+10*x4*x1+20*x3*x2-3*y5*(y0)^2-60*y3*y0*y2-60*y3*(y1)^2-30*y1*y0*y4-90*y1*(y2)^2)
i3 : dim(I)
```

