
Jets, arcs, and cylinders

Eric Walker cew028@uark.edu

Jet Spaces / Arc Spaces Learning Seminar: UCSD

19 May 2021

cew028@uark.edu


Outline
Resources:

• M. Mustaţă, Spaces of arcs in birational geometry.

• T. de Fernex, The space of arcs of an algebraic variety.

Topics:

• Quick review of functors of points

• Jet spaces

• Arc spaces

• Cylinders

• The Birational Transformation Theorem

• Computing log canonical thresholds using jets and arcs

Conventions:

• k is an algebraically closed field of characteristic 0

• m ∈ N ∪ {0}
• X is a scheme of finite type over k

• For a category C, Y ∈ C means Y lives in the class obj C



Outline
Resources:

• M. Mustaţă, Spaces of arcs in birational geometry.

• T. de Fernex, The space of arcs of an algebraic variety.

Topics:

• Quick review of functors of points

• Jet spaces

• Arc spaces

• Cylinders

• The Birational Transformation Theorem

• Computing log canonical thresholds using jets and arcs

Conventions:

• k is an algebraically closed field of characteristic 0

• m ∈ N ∪ {0}
• X is a scheme of finite type over k

• For a category C, Y ∈ C means Y lives in the class obj C



Outline
Resources:

• M. Mustaţă, Spaces of arcs in birational geometry.

• T. de Fernex, The space of arcs of an algebraic variety.

Topics:

• Quick review of functors of points

• Jet spaces

• Arc spaces

• Cylinders

• The Birational Transformation Theorem

• Computing log canonical thresholds using jets and arcs

Conventions:

• k is an algebraically closed field of characteristic 0

• m ∈ N ∪ {0}
• X is a scheme of finite type over k

• For a category C, Y ∈ C means Y lives in the class obj C



Quick review of functors of points

Let Y ∈ Schk. Its functor of points is the functor AffSchk → Set
defined by

Y (−) = HomSchk
(Spec−, Y ).

A scheme is determined up to isomorphism by its functor of
points. Intuition: Yoneda lemma, topological invariants that
probe a topological space

Given a functor AffSchk → Set, it is the functor of points of a
scheme Y (also called a representable functor), i.e., isomorphic
to a functor of the form HomSchk

(Spec−, Y ), if and only if it has
an affine cover and can glue as a sheaf.

In our setting, we’ll define schemes via their functors of points,
and verify their existence via explicit construction.



Quick review of functors of points

Let Y ∈ Schk. Its functor of points is the functor AffSchk → Set
defined by

Y (−) = HomSchk
(Spec−, Y ).

A scheme is determined up to isomorphism by its functor of
points. Intuition: Yoneda lemma, topological invariants that
probe a topological space

Given a functor AffSchk → Set, it is the functor of points of a
scheme Y (also called a representable functor), i.e., isomorphic
to a functor of the form HomSchk

(Spec−, Y ), if and only if it has
an affine cover and can glue as a sheaf.

In our setting, we’ll define schemes via their functors of points,
and verify their existence via explicit construction.



Quick review of functors of points

Let Y ∈ Schk. Its functor of points is the functor AffSchk → Set
defined by

Y (−) = HomSchk
(Spec−, Y ).

A scheme is determined up to isomorphism by its functor of
points. Intuition: Yoneda lemma, topological invariants that
probe a topological space

Given a functor AffSchk → Set, it is the functor of points of a
scheme Y (also called a representable functor), i.e., isomorphic
to a functor of the form HomSchk

(Spec−, Y ), if and only if it has
an affine cover and can glue as a sheaf.

In our setting, we’ll define schemes via their functors of points,
and verify their existence via explicit construction.



Quick review of functors of points

Let Y ∈ Schk. Its functor of points is the functor AffSchk → Set
defined by

Y (−) = HomSchk
(Spec−, Y ).

A scheme is determined up to isomorphism by its functor of
points. Intuition: Yoneda lemma, topological invariants that
probe a topological space

Given a functor AffSchk → Set, it is the functor of points of a
scheme Y (also called a representable functor), i.e., isomorphic
to a functor of the form HomSchk

(Spec−, Y ), if and only if it has
an affine cover and can glue as a sheaf.

In our setting, we’ll define schemes via their functors of points,
and verify their existence via explicit construction.



Quick review of functors of points

Let Y ∈ Schk. Its functor of points is the functor AffSchk → Set
defined by

Y (−) = HomSchk
(Spec−, Y ).

A scheme is determined up to isomorphism by its functor of
points. Intuition: Yoneda lemma, topological invariants that
probe a topological space

Given a functor AffSchk → Set, it is the functor of points of a
scheme Y (also called a representable functor), i.e., isomorphic
to a functor of the form HomSchk

(Spec−, Y ), if and only if it has
an affine cover and can glue as a sheaf.

In our setting, we’ll define schemes via their functors of points,
and verify their existence via explicit construction.



Jet spaces

LetX ∈ Schftk . Define themth jet space ofX, JmX (also written
Xm), to be the representing object of the functor Algk → Set,
A 7→ HomSchk

(SpecA[t]/tm+1, X). In other words, for every
A ∈ Algk, we have a functorial bijection of sets:

HomSchk
(SpecA, JmX) ∼= HomSchk

(SpecA[t]/tm+1, X).

The A-valued points of JmX are the A[t]/tm+1-valued points of
X.

Easy to check: given any X, J0X exists and is isomorphic to X.



Jet spaces

LetX ∈ Schftk . Define themth jet space ofX, JmX (also written
Xm), to be the representing object of the functor Algk → Set,
A 7→ HomSchk

(SpecA[t]/tm+1, X). In other words, for every
A ∈ Algk, we have a functorial bijection of sets:

HomSchk
(SpecA, JmX) ∼= HomSchk

(SpecA[t]/tm+1, X).

The A-valued points of JmX are the A[t]/tm+1-valued points of
X.

Easy to check: given any X, J0X exists and is isomorphic to X.



Jet spaces

LetX ∈ Schftk . Define themth jet space ofX, JmX (also written
Xm), to be the representing object of the functor Algk → Set,
A 7→ HomSchk

(SpecA[t]/tm+1, X). In other words, for every
A ∈ Algk, we have a functorial bijection of sets:

HomSchk
(SpecA, JmX) ∼= HomSchk

(SpecA[t]/tm+1, X).

The A-valued points of JmX are the A[t]/tm+1-valued points of
X.

Easy to check: given any X, J0X exists and is isomorphic to X.



Jet spaces

LetX ∈ Schftk . Define themth jet space ofX, JmX (also written
Xm), to be the representing object of the functor Algk → Set,
A 7→ HomSchk

(SpecA[t]/tm+1, X). In other words, for every
A ∈ Algk, we have a functorial bijection of sets:

HomSchk
(SpecA, JmX) ∼= HomSchk

(SpecA[t]/tm+1, X).

The A-valued points of JmX are the A[t]/tm+1-valued points of
X.

Easy to check: given any X, J0X exists and is isomorphic to X.



Jet spaces

LetX ∈ Schftk . Define themth jet space ofX, JmX (also written
Xm), to be the representing object of the functor Algk → Set,
A 7→ HomSchk

(SpecA[t]/tm+1, X). In other words, for every
A ∈ Algk, we have a functorial bijection of sets:

HomSchk
(SpecA, JmX) ∼= HomSchk

(SpecA[t]/tm+1, X).

The A-valued points of JmX are the A[t]/tm+1-valued points of
X.

Easy to check: given any X, J0X exists and is isomorphic to X.



Jet spaces

Indeed, we have a bijection

HomSchk
(SpecA, J0X) ∼= HomSchk

(SpecA[t]/t0+1, X)

∼= HomSchk
(SpecA[t]/t,X)

∼= HomSchk
(SpecA,X)

Since representing objects are unique up to isomorphism, we get
J0X ∼= X as claimed.



Jet spaces

Indeed, we have a bijection

HomSchk
(SpecA, J0X) ∼= HomSchk

(SpecA[t]/t0+1, X)
∼= HomSchk

(SpecA[t]/t,X)

∼= HomSchk
(SpecA,X)

Since representing objects are unique up to isomorphism, we get
J0X ∼= X as claimed.



Jet spaces

Indeed, we have a bijection

HomSchk
(SpecA, J0X) ∼= HomSchk

(SpecA[t]/t0+1, X)
∼= HomSchk

(SpecA[t]/t,X)
∼= HomSchk

(SpecA,X)

Since representing objects are unique up to isomorphism, we get
J0X ∼= X as claimed.



Jet spaces

Indeed, we have a bijection

HomSchk
(SpecA, J0X) ∼= HomSchk

(SpecA[t]/t0+1, X)
∼= HomSchk

(SpecA[t]/t,X)
∼= HomSchk

(SpecA,X)

Since representing objects are unique up to isomorphism, we get
J0X ∼= X as claimed.



Jet spaces

There are natural morphisms between jet spaces. Let m > p.
Since

A[t]/tm+1 → A[t]/tp+1,

we have

SpecA[t]/tp+1 → SpecA[t]/tm+1,

and so

HomSchk
(SpecA[t]/tm+1, X)→ HomSchk

(SpecA[t]/tp+1, X);

therefore we have canonical projections

πm,p : JmX → JpX.

Write πm for πm,0 : JmX → J0X ∼= X.



Jet spaces

There are natural morphisms between jet spaces. Let m > p.
Since

A[t]/tm+1 → A[t]/tp+1,

we have

SpecA[t]/tp+1 → SpecA[t]/tm+1,

and so

HomSchk
(SpecA[t]/tm+1, X)→ HomSchk

(SpecA[t]/tp+1, X);

therefore we have canonical projections

πm,p : JmX → JpX.

Write πm for πm,0 : JmX → J0X ∼= X.



Jet spaces

There are natural morphisms between jet spaces. Let m > p.
Since

A[t]/tm+1 → A[t]/tp+1,

we have

SpecA[t]/tp+1 → SpecA[t]/tm+1,

and so

HomSchk
(SpecA[t]/tm+1, X)→ HomSchk

(SpecA[t]/tp+1, X);

therefore we have canonical projections

πm,p : JmX → JpX.

Write πm for πm,0 : JmX → J0X ∼= X.



Jet spaces

There are natural morphisms between jet spaces. Let m > p.
Since

A[t]/tm+1 → A[t]/tp+1,

we have

SpecA[t]/tp+1 → SpecA[t]/tm+1,

and so

HomSchk
(SpecA[t]/tm+1, X)→ HomSchk

(SpecA[t]/tp+1, X);

therefore we have canonical projections

πm,p : JmX → JpX.

Write πm for πm,0 : JmX → J0X ∼= X.



Jet spaces

There are natural morphisms between jet spaces. Let m > p.
Since

A[t]/tm+1 → A[t]/tp+1,

we have

SpecA[t]/tp+1 → SpecA[t]/tm+1,

and so

HomSchk
(SpecA[t]/tm+1, X)→ HomSchk

(SpecA[t]/tp+1, X);

therefore we have canonical projections

πm,p : JmX → JpX.

Write πm for πm,0 : JmX → J0X ∼= X.



Jet spaces

There are natural morphisms between jet spaces. Let m > p.
Since

A[t]/tm+1 → A[t]/tp+1,

we have

SpecA[t]/tp+1 → SpecA[t]/tm+1,

and so

HomSchk
(SpecA[t]/tm+1, X)→ HomSchk

(SpecA[t]/tp+1, X);

therefore we have canonical projections

πm,p : JmX → JpX.

Write πm for πm,0 : JmX → J0X ∼= X.



Jet spaces

We know J0X exists. What about the case where m > 0?

Theorem. If X ∈ Schftk , then JmX exists.

Proof outline.

1 If X ∈ AffSchftk , then JmX exists.

2 If JmX exists, then given any open subset V ⊆ X, JmV
exists and is isomorphic to πm

−1V .

3 If X ∈ Schftk , then X has an affine cover U1 ∪ · · · ∪Ur = X.

4 For each element of the cover, JmUi exists by (1). Do they
glue to form a scheme? Does that scheme satisfy the
functor of points that JmX must?



Jet spaces

We know J0X exists. What about the case where m > 0?

Theorem. If X ∈ Schftk , then JmX exists.

Proof outline.

1 If X ∈ AffSchftk , then JmX exists.

2 If JmX exists, then given any open subset V ⊆ X, JmV
exists and is isomorphic to πm

−1V .

3 If X ∈ Schftk , then X has an affine cover U1 ∪ · · · ∪Ur = X.

4 For each element of the cover, JmUi exists by (1). Do they
glue to form a scheme? Does that scheme satisfy the
functor of points that JmX must?



Jet spaces

We know J0X exists. What about the case where m > 0?

Theorem. If X ∈ Schftk , then JmX exists.

Proof outline.

1 If X ∈ AffSchftk , then JmX exists.

2 If JmX exists, then given any open subset V ⊆ X, JmV
exists and is isomorphic to πm

−1V .

3 If X ∈ Schftk , then X has an affine cover U1 ∪ · · · ∪Ur = X.

4 For each element of the cover, JmUi exists by (1). Do they
glue to form a scheme? Does that scheme satisfy the
functor of points that JmX must?



Jet spaces

We know J0X exists. What about the case where m > 0?

Theorem. If X ∈ Schftk , then JmX exists.

Proof outline.

1 If X ∈ AffSchftk , then JmX exists.

2 If JmX exists, then given any open subset V ⊆ X, JmV
exists and is isomorphic to πm

−1V .

3 If X ∈ Schftk , then X has an affine cover U1 ∪ · · · ∪Ur = X.

4 For each element of the cover, JmUi exists by (1). Do they
glue to form a scheme? Does that scheme satisfy the
functor of points that JmX must?



Jet spaces

We know J0X exists. What about the case where m > 0?

Theorem. If X ∈ Schftk , then JmX exists.

Proof outline.

1 If X ∈ AffSchftk , then JmX exists.

2 If JmX exists, then given any open subset V ⊆ X, JmV
exists and is isomorphic to πm

−1V .

3 If X ∈ Schftk , then X has an affine cover U1 ∪ · · · ∪Ur = X.

4 For each element of the cover, JmUi exists by (1). Do they
glue to form a scheme? Does that scheme satisfy the
functor of points that JmX must?



Jet spaces

We know J0X exists. What about the case where m > 0?

Theorem. If X ∈ Schftk , then JmX exists.

Proof outline.

1 If X ∈ AffSchftk , then JmX exists.

2 If JmX exists, then given any open subset V ⊆ X, JmV
exists and is isomorphic to πm

−1V .

3 If X ∈ Schftk , then X has an affine cover U1 ∪ · · · ∪Ur = X.

4 For each element of the cover, JmUi exists by (1). Do they
glue to form a scheme? Does that scheme satisfy the
functor of points that JmX must?



Jet spaces

We know J0X exists. What about the case where m > 0?

Theorem. If X ∈ Schftk , then JmX exists.

Proof outline.

1 If X ∈ AffSchftk , then JmX exists.

2 If JmX exists, then given any open subset V ⊆ X, JmV
exists and is isomorphic to πm

−1V .

3 If X ∈ Schftk , then X has an affine cover U1 ∪ · · · ∪Ur = X.

4 For each element of the cover, JmUi exists by (1). Do they
glue to form a scheme? Does that scheme satisfy the
functor of points that JmX must?



Jet spaces
1 If X ∈ AffSchftk , then JmX exists.

Since X ∈ AffSchftk , X ∼= Spec k[x1, . . . , xn]/(f1, . . . , fs). We’ll
use a closed immersion X ↪→ An to show JmX exists.

First see a motivating example: let X ∼= Spec k[x, y]/(xy) and
let m = 2. By definition,

HomSchk
(SpecA, J2X) ∼= HomSchk

(SpecA[t]/t3,Spec k[x, y]/(xy))

∼= HomAlgk
(k[x, y]/(xy), A[t]/t3).

A k-algebra homomorphism ϕ : k[x, y]/(xy) → A[t]/t3 is deter-
mined by

ϕ(x) := a0 + a1t+ a2t
2

ϕ(y) := b0 + b1t+ b2t
2

subject to

ϕ(xy) = (a0 + a1t+ a2t
2)(b0 + b1t+ b2t

2) = 0 (mod t3).



Jet spaces
1 If X ∈ AffSchftk , then JmX exists.

Since X ∈ AffSchftk , X ∼= Spec k[x1, . . . , xn]/(f1, . . . , fs). We’ll
use a closed immersion X ↪→ An to show JmX exists.

First see a motivating example: let X ∼= Spec k[x, y]/(xy) and
let m = 2. By definition,

HomSchk
(SpecA, J2X) ∼= HomSchk

(SpecA[t]/t3,Spec k[x, y]/(xy))

∼= HomAlgk
(k[x, y]/(xy), A[t]/t3).

A k-algebra homomorphism ϕ : k[x, y]/(xy) → A[t]/t3 is deter-
mined by

ϕ(x) := a0 + a1t+ a2t
2

ϕ(y) := b0 + b1t+ b2t
2

subject to

ϕ(xy) = (a0 + a1t+ a2t
2)(b0 + b1t+ b2t

2) = 0 (mod t3).



Jet spaces
1 If X ∈ AffSchftk , then JmX exists.

Since X ∈ AffSchftk , X ∼= Spec k[x1, . . . , xn]/(f1, . . . , fs). We’ll
use a closed immersion X ↪→ An to show JmX exists.

First see a motivating example: let X ∼= Spec k[x, y]/(xy) and
let m = 2. By definition,

HomSchk
(SpecA, J2X) ∼= HomSchk

(SpecA[t]/t3,Spec k[x, y]/(xy))

∼= HomAlgk
(k[x, y]/(xy), A[t]/t3).

A k-algebra homomorphism ϕ : k[x, y]/(xy) → A[t]/t3 is deter-
mined by

ϕ(x) := a0 + a1t+ a2t
2

ϕ(y) := b0 + b1t+ b2t
2

subject to

ϕ(xy) = (a0 + a1t+ a2t
2)(b0 + b1t+ b2t

2) = 0 (mod t3).



Jet spaces
1 If X ∈ AffSchftk , then JmX exists.

Since X ∈ AffSchftk , X ∼= Spec k[x1, . . . , xn]/(f1, . . . , fs). We’ll
use a closed immersion X ↪→ An to show JmX exists.

First see a motivating example: let X ∼= Spec k[x, y]/(xy) and
let m = 2. By definition,

HomSchk
(SpecA, J2X) ∼= HomSchk

(SpecA[t]/t3,Spec k[x, y]/(xy))

∼= HomAlgk
(k[x, y]/(xy), A[t]/t3).

A k-algebra homomorphism ϕ : k[x, y]/(xy) → A[t]/t3 is deter-
mined by

ϕ(x) := a0 + a1t+ a2t
2

ϕ(y) := b0 + b1t+ b2t
2

subject to

ϕ(xy) = (a0 + a1t+ a2t
2)(b0 + b1t+ b2t

2) = 0 (mod t3).



Jet spaces
1 If X ∈ AffSchftk , then JmX exists.

Since X ∈ AffSchftk , X ∼= Spec k[x1, . . . , xn]/(f1, . . . , fs). We’ll
use a closed immersion X ↪→ An to show JmX exists.

First see a motivating example: let X ∼= Spec k[x, y]/(xy) and
let m = 2. By definition,

HomSchk
(SpecA, J2X) ∼= HomSchk

(SpecA[t]/t3,Spec k[x, y]/(xy))

∼= HomAlgk
(k[x, y]/(xy), A[t]/t3).

A k-algebra homomorphism ϕ : k[x, y]/(xy) → A[t]/t3 is deter-
mined by

ϕ(x) := a0 + a1t+ a2t
2

ϕ(y) := b0 + b1t+ b2t
2

subject to

ϕ(xy) = (a0 + a1t+ a2t
2)(b0 + b1t+ b2t

2) = 0 (mod t3).



Jet spaces
1 If X ∈ AffSchftk , then JmX exists.

Since X ∈ AffSchftk , X ∼= Spec k[x1, . . . , xn]/(f1, . . . , fs). We’ll
use a closed immersion X ↪→ An to show JmX exists.

First see a motivating example: let X ∼= Spec k[x, y]/(xy) and
let m = 2. By definition,

HomSchk
(SpecA, J2X) ∼= HomSchk

(SpecA[t]/t3,Spec k[x, y]/(xy))

∼= HomAlgk
(k[x, y]/(xy), A[t]/t3).

A k-algebra homomorphism ϕ : k[x, y]/(xy) → A[t]/t3 is deter-
mined by

ϕ(x) := a0 + a1t+ a2t
2

ϕ(y) := b0 + b1t+ b2t
2

subject to

ϕ(xy) = (a0 + a1t+ a2t
2)(b0 + b1t+ b2t

2) = 0 (mod t3).



Jet spaces
Distributing

ϕ(xy) = (a0 + a1t+ a2t
2)(b0 + b1t+ b2t

2) = 0 (mod t3)

yields

a0b0 + (a1b0 + a0b1)t+ (a2b0 + a1b1 + a0b2)t
2 = 0.

Equating coefficients, we have

a0b0 = 0,

a1b0 + a0b1 = 0,

a2b0 + a1b1 + a0b2 = 0.

In other words, to choose a map ϕ : k[x, y]/(xy) → A[t]/t3 is to
choose a0, a1, a2, b0, b1, b2 ∈ A such that the above relations are
satisfied.
Thus the map k[x, y]/(xy) → A[t]/t3 is the same as a map
k[a0, a1, a2, b0, b1, b2]/(a0b0, a1b0 + a0b1, a2b0 + a1b1 + a0b2)→ A.
Write k[a, b]/I for this k-algebra.



Jet spaces
Distributing

ϕ(xy) = (a0 + a1t+ a2t
2)(b0 + b1t+ b2t

2) = 0 (mod t3)

yields

a0b0 + (a1b0 + a0b1)t+ (a2b0 + a1b1 + a0b2)t
2 = 0.

Equating coefficients, we have

a0b0 = 0,

a1b0 + a0b1 = 0,

a2b0 + a1b1 + a0b2 = 0.

In other words, to choose a map ϕ : k[x, y]/(xy) → A[t]/t3 is to
choose a0, a1, a2, b0, b1, b2 ∈ A such that the above relations are
satisfied.
Thus the map k[x, y]/(xy) → A[t]/t3 is the same as a map
k[a0, a1, a2, b0, b1, b2]/(a0b0, a1b0 + a0b1, a2b0 + a1b1 + a0b2)→ A.
Write k[a, b]/I for this k-algebra.



Jet spaces
Distributing

ϕ(xy) = (a0 + a1t+ a2t
2)(b0 + b1t+ b2t

2) = 0 (mod t3)

yields

a0b0 + (a1b0 + a0b1)t+ (a2b0 + a1b1 + a0b2)t
2 = 0.

Equating coefficients, we have

a0b0 = 0,

a1b0 + a0b1 = 0,

a2b0 + a1b1 + a0b2 = 0.

In other words, to choose a map ϕ : k[x, y]/(xy) → A[t]/t3 is to
choose a0, a1, a2, b0, b1, b2 ∈ A such that the above relations are
satisfied.

Thus the map k[x, y]/(xy) → A[t]/t3 is the same as a map
k[a0, a1, a2, b0, b1, b2]/(a0b0, a1b0 + a0b1, a2b0 + a1b1 + a0b2)→ A.
Write k[a, b]/I for this k-algebra.



Jet spaces
Distributing

ϕ(xy) = (a0 + a1t+ a2t
2)(b0 + b1t+ b2t

2) = 0 (mod t3)

yields

a0b0 + (a1b0 + a0b1)t+ (a2b0 + a1b1 + a0b2)t
2 = 0.

Equating coefficients, we have

a0b0 = 0,

a1b0 + a0b1 = 0,

a2b0 + a1b1 + a0b2 = 0.

In other words, to choose a map ϕ : k[x, y]/(xy) → A[t]/t3 is to
choose a0, a1, a2, b0, b1, b2 ∈ A such that the above relations are
satisfied.
Thus the map k[x, y]/(xy) → A[t]/t3 is the same as a map
k[a0, a1, a2, b0, b1, b2]/(a0b0, a1b0 + a0b1, a2b0 + a1b1 + a0b2)→ A.
Write k[a, b]/I for this k-algebra.



Jet spaces

Therefore,

HomSchk
(SpecA, J2X) ∼= HomSchk

(SpecA[t]/t3,Spec k[x, y]/(xy))

∼= HomAlgk
(k[x, y]/(xy), A[t]/t3)

∼= HomAlgk
(k[a, b]/I,A)

∼= HomSchk
(SpecA,Spec k[a, b]/I).

By uniqueness up to isomorphism, J2X ∼= Spec k[a, b]/I.

This process gives a general algorithm for computing JmX for
X ∈ AffSchftk . Specifying an A[t]/tm+1-point of X is a map
ϕ : k[x1, . . . , xn]/(f1, . . . , fs) → A[t]/tm+1. Consider the images
ϕ(xi) as (m + 1) choices of elements of A and subject to the
relations fj(ϕ(x1), . . . , ϕ(xn)) = 0. Consequently JmX can be
defined as an affine subscheme of An(m+1) given by the vanishing
of a set of polynomials determined by fjs.



Jet spaces

Therefore,

HomSchk
(SpecA, J2X) ∼= HomSchk

(SpecA[t]/t3,Spec k[x, y]/(xy))

∼= HomAlgk
(k[x, y]/(xy), A[t]/t3)

∼= HomAlgk
(k[a, b]/I,A)

∼= HomSchk
(SpecA,Spec k[a, b]/I).

By uniqueness up to isomorphism, J2X ∼= Spec k[a, b]/I.

This process gives a general algorithm for computing JmX for
X ∈ AffSchftk . Specifying an A[t]/tm+1-point of X is a map
ϕ : k[x1, . . . , xn]/(f1, . . . , fs) → A[t]/tm+1. Consider the images
ϕ(xi) as (m + 1) choices of elements of A and subject to the
relations fj(ϕ(x1), . . . , ϕ(xn)) = 0. Consequently JmX can be
defined as an affine subscheme of An(m+1) given by the vanishing
of a set of polynomials determined by fjs.



Jet spaces

Therefore,

HomSchk
(SpecA, J2X) ∼= HomSchk

(SpecA[t]/t3,Spec k[x, y]/(xy))

∼= HomAlgk
(k[x, y]/(xy), A[t]/t3)

∼= HomAlgk
(k[a, b]/I,A)

∼= HomSchk
(SpecA,Spec k[a, b]/I).

By uniqueness up to isomorphism, J2X ∼= Spec k[a, b]/I.

This process gives a general algorithm for computing JmX for
X ∈ AffSchftk . Specifying an A[t]/tm+1-point of X is a map
ϕ : k[x1, . . . , xn]/(f1, . . . , fs) → A[t]/tm+1. Consider the images
ϕ(xi) as (m + 1) choices of elements of A and subject to the
relations fj(ϕ(x1), . . . , ϕ(xn)) = 0. Consequently JmX can be
defined as an affine subscheme of An(m+1) given by the vanishing
of a set of polynomials determined by fjs.



Jet spaces

Therefore,

HomSchk
(SpecA, J2X) ∼= HomSchk

(SpecA[t]/t3,Spec k[x, y]/(xy))

∼= HomAlgk
(k[x, y]/(xy), A[t]/t3)

∼= HomAlgk
(k[a, b]/I,A)

∼= HomSchk
(SpecA,Spec k[a, b]/I).

By uniqueness up to isomorphism, J2X ∼= Spec k[a, b]/I.

This process gives a general algorithm for computing JmX for
X ∈ AffSchftk . Specifying an A[t]/tm+1-point of X is a map
ϕ : k[x1, . . . , xn]/(f1, . . . , fs) → A[t]/tm+1. Consider the images
ϕ(xi) as (m + 1) choices of elements of A and subject to the
relations fj(ϕ(x1), . . . , ϕ(xn)) = 0. Consequently JmX can be
defined as an affine subscheme of An(m+1) given by the vanishing
of a set of polynomials determined by fjs.



Jet spaces

Therefore,

HomSchk
(SpecA, J2X) ∼= HomSchk

(SpecA[t]/t3,Spec k[x, y]/(xy))

∼= HomAlgk
(k[x, y]/(xy), A[t]/t3)

∼= HomAlgk
(k[a, b]/I,A)

∼= HomSchk
(SpecA,Spec k[a, b]/I).

By uniqueness up to isomorphism, J2X ∼= Spec k[a, b]/I.

This process gives a general algorithm for computing JmX for
X ∈ AffSchftk . Specifying an A[t]/tm+1-point of X is a map
ϕ : k[x1, . . . , xn]/(f1, . . . , fs) → A[t]/tm+1. Consider the images
ϕ(xi) as (m + 1) choices of elements of A and subject to the
relations fj(ϕ(x1), . . . , ϕ(xn)) = 0. Consequently JmX can be
defined as an affine subscheme of An(m+1) given by the vanishing
of a set of polynomials determined by fjs.



Jet spaces

... but, where’s the magic ?

Recall our motivating example X = k[x, y]/(xy) with
J2X ∼= Spec k[a0, a1, a2, b0, b1, b2]/(a0b0, a1b0 + a0b1, a2b0 + a1b1 + a0b2).

Relabel variables:
J2X ∼= Spec k[x, x′, x′′, y, y′, y′′]/(xy, x′y + xy′, x′′y + x′y′ + xy′′).

Derivatives!

In fact, since char k = 0 6= 2, a change of variables allows us:
J2X ∼= Spec k[x, x′, x′′, y, y′, y′′]/(xy, x′y + xy′, x′′y + 2x′y′ + xy′′)

J2X ∼= Spec k[x, x′, x′′, y, y′, y′′]/(xy, (xy)′, (xy)′′)

DERIVATIVES!



Jet spaces

... but, where’s the magic ?

Recall our motivating example X = k[x, y]/(xy) with
J2X ∼= Spec k[a0, a1, a2, b0, b1, b2]/(a0b0, a1b0 + a0b1, a2b0 + a1b1 + a0b2).

Relabel variables:
J2X ∼= Spec k[x, x′, x′′, y, y′, y′′]/(xy, x′y + xy′, x′′y + x′y′ + xy′′).

Derivatives!

In fact, since char k = 0 6= 2, a change of variables allows us:
J2X ∼= Spec k[x, x′, x′′, y, y′, y′′]/(xy, x′y + xy′, x′′y + 2x′y′ + xy′′)

J2X ∼= Spec k[x, x′, x′′, y, y′, y′′]/(xy, (xy)′, (xy)′′)

DERIVATIVES!



Jet spaces

... but, where’s the magic ?

Recall our motivating example X = k[x, y]/(xy) with
J2X ∼= Spec k[a0, a1, a2, b0, b1, b2]/(a0b0, a1b0 + a0b1, a2b0 + a1b1 + a0b2).

Relabel variables:
J2X ∼= Spec k[x, x′, x′′, y, y′, y′′]/(xy, x′y + xy′, x′′y + x′y′ + xy′′).

Derivatives!

In fact, since char k = 0 6= 2, a change of variables allows us:
J2X ∼= Spec k[x, x′, x′′, y, y′, y′′]/(xy, x′y + xy′, x′′y + 2x′y′ + xy′′)

J2X ∼= Spec k[x, x′, x′′, y, y′, y′′]/(xy, (xy)′, (xy)′′)

DERIVATIVES!



Jet spaces

... but, where’s the magic ?

Recall our motivating example X = k[x, y]/(xy) with
J2X ∼= Spec k[a0, a1, a2, b0, b1, b2]/(a0b0, a1b0 + a0b1, a2b0 + a1b1 + a0b2).

Relabel variables:
J2X ∼= Spec k[x, x′, x′′, y, y′, y′′]/(xy, x′y + xy′, x′′y + x′y′ + xy′′).

Derivatives!

In fact, since char k = 0 6= 2, a change of variables allows us:
J2X ∼= Spec k[x, x′, x′′, y, y′, y′′]/(xy, x′y + xy′, x′′y + 2x′y′ + xy′′)

J2X ∼= Spec k[x, x′, x′′, y, y′, y′′]/(xy, (xy)′, (xy)′′)

DERIVATIVES!



Jet spaces

... but, where’s the magic ?

Recall our motivating example X = k[x, y]/(xy) with
J2X ∼= Spec k[a0, a1, a2, b0, b1, b2]/(a0b0, a1b0 + a0b1, a2b0 + a1b1 + a0b2).

Relabel variables:
J2X ∼= Spec k[x, x′, x′′, y, y′, y′′]/(xy, x′y + xy′, x′′y + x′y′ + xy′′).

Derivatives!

In fact, since char k = 0 6= 2, a change of variables allows us:
J2X ∼= Spec k[x, x′, x′′, y, y′, y′′]/(xy, x′y + xy′, x′′y + 2x′y′ + xy′′)

J2X ∼= Spec k[x, x′, x′′, y, y′, y′′]/(xy, (xy)′, (xy)′′)

DERIVATIVES!



Jet spaces

... but, where’s the magic ?

Recall our motivating example X = k[x, y]/(xy) with
J2X ∼= Spec k[a0, a1, a2, b0, b1, b2]/(a0b0, a1b0 + a0b1, a2b0 + a1b1 + a0b2).

Relabel variables:
J2X ∼= Spec k[x, x′, x′′, y, y′, y′′]/(xy, x′y + xy′, x′′y + x′y′ + xy′′).

Derivatives!

In fact, since char k = 0 6= 2, a change of variables allows us:
J2X ∼= Spec k[x, x′, x′′, y, y′, y′′]/(xy, x′y + xy′, x′′y + 2x′y′ + xy′′)

J2X ∼= Spec k[x, x′, x′′, y, y′, y′′]/(xy, (xy)′, (xy)′′)

DERIVATIVES!



Jet spaces

... but, where’s the magic ?

Recall our motivating example X = k[x, y]/(xy) with
J2X ∼= Spec k[a0, a1, a2, b0, b1, b2]/(a0b0, a1b0 + a0b1, a2b0 + a1b1 + a0b2).

Relabel variables:
J2X ∼= Spec k[x, x′, x′′, y, y′, y′′]/(xy, x′y + xy′, x′′y + x′y′ + xy′′).

Derivatives!

In fact, since char k = 0 6= 2, a change of variables allows us:
J2X ∼= Spec k[x, x′, x′′, y, y′, y′′]/(xy, x′y + xy′, x′′y + 2x′y′ + xy′′)

J2X ∼= Spec k[x, x′, x′′, y, y′, y′′]/(xy, (xy)′, (xy)′′)

DERIVATIVES!



Jet spaces

So the algorithm for computing JmX for X ∈ AffSchftk is effec-
tively even simpler, at least conceptually. We have shown (proof
via one example) that

Theorem. If X ∈ AffSchftk , i.e.,

X ∼= Spec k[x1, . . . , xn]/(f1, . . . , fs),

then JmX exists, and moreover,

JmX ∼= Spec k[xi, xi
′, xi

′′, . . . , xi
(m) | 1 ≤ i ≤ n]�(fj , fj

′, fj
′′, . . . , fj

(m) | 1 ≤ j ≤ s),

where we understand fj
(`) to mean formal implicit differ-

entiation.



Jet spaces

So the algorithm for computing JmX for X ∈ AffSchftk is effec-
tively even simpler, at least conceptually. We have shown (proof
via one example) that

Theorem. If X ∈ AffSchftk , i.e.,

X ∼= Spec k[x1, . . . , xn]/(f1, . . . , fs),

then JmX exists, and moreover,

JmX ∼= Spec k[xi, xi
′, xi

′′, . . . , xi
(m) | 1 ≤ i ≤ n]�(fj , fj

′, fj
′′, . . . , fj

(m) | 1 ≤ j ≤ s),

where we understand fj
(`) to mean formal implicit differ-

entiation.



Jet spaces

2 If JmX exists, then given any open subset V ⊆ X, JmV
exists and is isomorphic to πm

−1V .

We’ll show πm
−1V satisfies the functor of points that JmV must.

Let A ∈ Algk and consider the natural homomorphism induced
by πm, ιA : SpecA→ SpecA[t]/tm+1. An m-jet in JmX, a map
f : SpecA[t]/tm+1 → X, factors through V if and only if f ◦ ιA
factors through V .

SpecA V X

SpecA[t]/tm+1

ιA f

Therefore, πm
−1V is the set of jets in JmV ⊆ JmX, i.e., the

maps SpecA[t]/tm+1 → V .



Jet spaces

2 If JmX exists, then given any open subset V ⊆ X, JmV
exists and is isomorphic to πm

−1V .

We’ll show πm
−1V satisfies the functor of points that JmV must.

Let A ∈ Algk and consider the natural homomorphism induced
by πm, ιA : SpecA→ SpecA[t]/tm+1. An m-jet in JmX, a map
f : SpecA[t]/tm+1 → X, factors through V if and only if f ◦ ιA
factors through V .

SpecA V X

SpecA[t]/tm+1

ιA f

Therefore, πm
−1V is the set of jets in JmV ⊆ JmX, i.e., the

maps SpecA[t]/tm+1 → V .



Jet spaces

2 If JmX exists, then given any open subset V ⊆ X, JmV
exists and is isomorphic to πm

−1V .

We’ll show πm
−1V satisfies the functor of points that JmV must.

Let A ∈ Algk and consider the natural homomorphism induced
by πm, ιA : SpecA→ SpecA[t]/tm+1. An m-jet in JmX, a map
f : SpecA[t]/tm+1 → X, factors through V if and only if f ◦ ιA
factors through V .

SpecA V X

SpecA[t]/tm+1

ιA f

Therefore, πm
−1V is the set of jets in JmV ⊆ JmX, i.e., the

maps SpecA[t]/tm+1 → V .



Jet spaces

2 If JmX exists, then given any open subset V ⊆ X, JmV
exists and is isomorphic to πm

−1V .

We’ll show πm
−1V satisfies the functor of points that JmV must.

Let A ∈ Algk and consider the natural homomorphism induced
by πm, ιA : SpecA→ SpecA[t]/tm+1. An m-jet in JmX, a map
f : SpecA[t]/tm+1 → X, factors through V if and only if f ◦ ιA
factors through V .

SpecA V X

SpecA[t]/tm+1

ιA f

Therefore, πm
−1V is the set of jets in JmV ⊆ JmX, i.e., the

maps SpecA[t]/tm+1 → V .



Jet spaces

2 If JmX exists, then given any open subset V ⊆ X, JmV
exists and is isomorphic to πm

−1V .

We’ll show πm
−1V satisfies the functor of points that JmV must.

Let A ∈ Algk and consider the natural homomorphism induced
by πm, ιA : SpecA→ SpecA[t]/tm+1. An m-jet in JmX, a map
f : SpecA[t]/tm+1 → X, factors through V if and only if f ◦ ιA
factors through V .

SpecA V X

SpecA[t]/tm+1

ιA f

Therefore, πm
−1V is the set of jets in JmV ⊆ JmX, i.e., the

maps SpecA[t]/tm+1 → V .



Jet spaces

3 If X ∈ Schftk , then X has an affine cover U1 ∪ · · · ∪Ur = X.

Yep, sure does!

4 For each element of the cover, JmUi exists by (1). Do they
glue to form a scheme? Does that scheme satisfy the
functor of points that JmX must?

We’d like to see the JmUis glue to form a scheme, so we need to
consider intersections on which they’d glue.
Since JmUi exist, for each i there are maps πim : JmUi → Ui,
and by (2), an intersection Jm(Ui ∩ Uj) is isomorphic to both

πim
−1

(Ui ∩Uj) and πjm
−1

(Ui ∩Uj). Thus we have concurrence on
intersections and can glue {JmUi} to form a scheme.
Does the scheme we’ve just glued satisfy the functor of points
definition that JmX must? Yes, an easy exercise for the reader.



Jet spaces

3 If X ∈ Schftk , then X has an affine cover U1 ∪ · · · ∪Ur = X.

Yep, sure does!

4 For each element of the cover, JmUi exists by (1). Do they
glue to form a scheme? Does that scheme satisfy the
functor of points that JmX must?

We’d like to see the JmUis glue to form a scheme, so we need to
consider intersections on which they’d glue.
Since JmUi exist, for each i there are maps πim : JmUi → Ui,
and by (2), an intersection Jm(Ui ∩ Uj) is isomorphic to both

πim
−1

(Ui ∩Uj) and πjm
−1

(Ui ∩Uj). Thus we have concurrence on
intersections and can glue {JmUi} to form a scheme.
Does the scheme we’ve just glued satisfy the functor of points
definition that JmX must? Yes, an easy exercise for the reader.



Jet spaces

3 If X ∈ Schftk , then X has an affine cover U1 ∪ · · · ∪Ur = X.

Yep, sure does!

4 For each element of the cover, JmUi exists by (1). Do they
glue to form a scheme? Does that scheme satisfy the
functor of points that JmX must?

We’d like to see the JmUis glue to form a scheme, so we need to
consider intersections on which they’d glue.
Since JmUi exist, for each i there are maps πim : JmUi → Ui,
and by (2), an intersection Jm(Ui ∩ Uj) is isomorphic to both

πim
−1

(Ui ∩Uj) and πjm
−1

(Ui ∩Uj). Thus we have concurrence on
intersections and can glue {JmUi} to form a scheme.
Does the scheme we’ve just glued satisfy the functor of points
definition that JmX must? Yes, an easy exercise for the reader.



Jet spaces

3 If X ∈ Schftk , then X has an affine cover U1 ∪ · · · ∪Ur = X.

Yep, sure does!

4 For each element of the cover, JmUi exists by (1). Do they
glue to form a scheme? Does that scheme satisfy the
functor of points that JmX must?

We’d like to see the JmUis glue to form a scheme, so we need to
consider intersections on which they’d glue.

Since JmUi exist, for each i there are maps πim : JmUi → Ui,
and by (2), an intersection Jm(Ui ∩ Uj) is isomorphic to both

πim
−1

(Ui ∩Uj) and πjm
−1

(Ui ∩Uj). Thus we have concurrence on
intersections and can glue {JmUi} to form a scheme.
Does the scheme we’ve just glued satisfy the functor of points
definition that JmX must? Yes, an easy exercise for the reader.



Jet spaces

3 If X ∈ Schftk , then X has an affine cover U1 ∪ · · · ∪Ur = X.

Yep, sure does!

4 For each element of the cover, JmUi exists by (1). Do they
glue to form a scheme? Does that scheme satisfy the
functor of points that JmX must?

We’d like to see the JmUis glue to form a scheme, so we need to
consider intersections on which they’d glue.
Since JmUi exist, for each i there are maps πim : JmUi → Ui,
and by (2), an intersection Jm(Ui ∩ Uj) is isomorphic to both

πim
−1

(Ui ∩Uj) and πjm
−1

(Ui ∩Uj). Thus we have concurrence on
intersections and can glue {JmUi} to form a scheme.

Does the scheme we’ve just glued satisfy the functor of points
definition that JmX must? Yes, an easy exercise for the reader.



Jet spaces

3 If X ∈ Schftk , then X has an affine cover U1 ∪ · · · ∪Ur = X.

Yep, sure does!

4 For each element of the cover, JmUi exists by (1). Do they
glue to form a scheme? Does that scheme satisfy the
functor of points that JmX must?

We’d like to see the JmUis glue to form a scheme, so we need to
consider intersections on which they’d glue.
Since JmUi exist, for each i there are maps πim : JmUi → Ui,
and by (2), an intersection Jm(Ui ∩ Uj) is isomorphic to both

πim
−1

(Ui ∩Uj) and πjm
−1

(Ui ∩Uj). Thus we have concurrence on
intersections and can glue {JmUi} to form a scheme.
Does the scheme we’ve just glued satisfy the functor of points
definition that JmX must? Yes, an easy exercise for the reader.



Jet spaces

So jet spaces do exist. Some facts:

• If X ∈ VarsmC , then J1X ∼= TX , the total space of the
tangent bundle, by definition.

• If X ∈ Schftk , then J1X ∼= Spec Sym ΩX/k, where ΩX/k is
the module of Kähler differentials of X over k.

• If f : X → Y is a morphism of schemes, then there exists a
morphism Jmf : JmX → JmY (also written
fm : Xm → Ym).

• If f : X → Y is étale, then JmX ∼= X ×Y JmY .

• If X is a nonsingular variety of dimension n, then JmX is a
nonsingular variety of dimension n(m+ 1).

• The maps πm,p : JmX → JpX, m > p, are affine
morphisms of k-schemes.



Jet spaces

So jet spaces do exist. Some facts:

• If X ∈ VarsmC , then J1X ∼= TX , the total space of the
tangent bundle, by definition.

• If X ∈ Schftk , then J1X ∼= Spec Sym ΩX/k, where ΩX/k is
the module of Kähler differentials of X over k.

• If f : X → Y is a morphism of schemes, then there exists a
morphism Jmf : JmX → JmY (also written
fm : Xm → Ym).

• If f : X → Y is étale, then JmX ∼= X ×Y JmY .

• If X is a nonsingular variety of dimension n, then JmX is a
nonsingular variety of dimension n(m+ 1).

• The maps πm,p : JmX → JpX, m > p, are affine
morphisms of k-schemes.



Jet spaces

So jet spaces do exist. Some facts:

• If X ∈ VarsmC , then J1X ∼= TX , the total space of the
tangent bundle, by definition.

• If X ∈ Schftk , then J1X ∼= Spec Sym ΩX/k, where ΩX/k is
the module of Kähler differentials of X over k.

• If f : X → Y is a morphism of schemes, then there exists a
morphism Jmf : JmX → JmY (also written
fm : Xm → Ym).

• If f : X → Y is étale, then JmX ∼= X ×Y JmY .

• If X is a nonsingular variety of dimension n, then JmX is a
nonsingular variety of dimension n(m+ 1).

• The maps πm,p : JmX → JpX, m > p, are affine
morphisms of k-schemes.



Jet spaces

So jet spaces do exist. Some facts:

• If X ∈ VarsmC , then J1X ∼= TX , the total space of the
tangent bundle, by definition.

• If X ∈ Schftk , then J1X ∼= Spec Sym ΩX/k, where ΩX/k is
the module of Kähler differentials of X over k.

• If f : X → Y is a morphism of schemes, then there exists a
morphism Jmf : JmX → JmY (also written
fm : Xm → Ym).

• If f : X → Y is étale, then JmX ∼= X ×Y JmY .

• If X is a nonsingular variety of dimension n, then JmX is a
nonsingular variety of dimension n(m+ 1).

• The maps πm,p : JmX → JpX, m > p, are affine
morphisms of k-schemes.



Jet spaces

So jet spaces do exist. Some facts:

• If X ∈ VarsmC , then J1X ∼= TX , the total space of the
tangent bundle, by definition.

• If X ∈ Schftk , then J1X ∼= Spec Sym ΩX/k, where ΩX/k is
the module of Kähler differentials of X over k.

• If f : X → Y is a morphism of schemes, then there exists a
morphism Jmf : JmX → JmY (also written
fm : Xm → Ym).

• If f : X → Y is étale, then JmX ∼= X ×Y JmY .

• If X is a nonsingular variety of dimension n, then JmX is a
nonsingular variety of dimension n(m+ 1).

• The maps πm,p : JmX → JpX, m > p, are affine
morphisms of k-schemes.



Jet spaces

So jet spaces do exist. Some facts:

• If X ∈ VarsmC , then J1X ∼= TX , the total space of the
tangent bundle, by definition.

• If X ∈ Schftk , then J1X ∼= Spec Sym ΩX/k, where ΩX/k is
the module of Kähler differentials of X over k.

• If f : X → Y is a morphism of schemes, then there exists a
morphism Jmf : JmX → JmY (also written
fm : Xm → Ym).

• If f : X → Y is étale, then JmX ∼= X ×Y JmY .

• If X is a nonsingular variety of dimension n, then JmX is a
nonsingular variety of dimension n(m+ 1).

• The maps πm,p : JmX → JpX, m > p, are affine
morphisms of k-schemes.



Jet spaces

So jet spaces do exist. Some facts:

• If X ∈ VarsmC , then J1X ∼= TX , the total space of the
tangent bundle, by definition.

• If X ∈ Schftk , then J1X ∼= Spec Sym ΩX/k, where ΩX/k is
the module of Kähler differentials of X over k.

• If f : X → Y is a morphism of schemes, then there exists a
morphism Jmf : JmX → JmY (also written
fm : Xm → Ym).

• If f : X → Y is étale, then JmX ∼= X ×Y JmY .

• If X is a nonsingular variety of dimension n, then JmX is a
nonsingular variety of dimension n(m+ 1).

• The maps πm,p : JmX → JpX, m > p, are affine
morphisms of k-schemes.



Arc spaces

Let X ∈ Schftk . We have a diagram of affine morphisms of k-
schemes

· · · → JmX → Jm−1X → · · · → J1X → J0X ∼= X.

By abstract nonsense, the projective limit of this diagram exists
in Schk.
Define the arc space of X, J∞X (also written X∞ and sometimes
L(X)), to be the projective limit

J∞X := lim←− J
mX.



Arc spaces

Let X ∈ Schftk . We have a diagram of affine morphisms of k-
schemes

· · · → JmX → Jm−1X → · · · → J1X → J0X ∼= X.

By abstract nonsense, the projective limit of this diagram exists
in Schk.

Define the arc space of X, J∞X (also written X∞ and sometimes
L(X)), to be the projective limit

J∞X := lim←− J
mX.



Arc spaces

Let X ∈ Schftk . We have a diagram of affine morphisms of k-
schemes

· · · → JmX → Jm−1X → · · · → J1X → J0X ∼= X.

By abstract nonsense, the projective limit of this diagram exists
in Schk.
Define the arc space of X, J∞X (also written X∞ and sometimes
L(X)), to be the projective limit

J∞X := lim←− J
mX.



Arc spaces

Arcs of affine schemes can be defined via a functor of points. If
X ∈ AffSchk, then for all A ∈ Algk, we have using the functor
of points description of jet schemes,

HomSchk
(SpecA, J∞X) ∼= lim←−HomSchk

(SpecA, JmX)

∼= lim←−HomSchk
(SpecA[t]/tm+1, X)

∼= HomSchk
(SpecAJtK, X).

If X ∈ Schk, then any Spec k[t]/tm+1 → X and Spec kJtK → X
must factor through any affine open neighborhood of the image
of the closed point. Consequently, the elements of J∞X(k) cor-
respond to arcs in X; i.e., we have a bijection

HomSchk
(Spec k, J∞X) ∼= HomSchk

(Spec kJtK, X).



Arc spaces

Arcs of affine schemes can be defined via a functor of points. If
X ∈ AffSchk, then for all A ∈ Algk, we have using the functor
of points description of jet schemes,

HomSchk
(SpecA, J∞X) ∼= lim←−HomSchk

(SpecA, JmX)

∼= lim←−HomSchk
(SpecA[t]/tm+1, X)

∼= HomSchk
(SpecAJtK, X).

If X ∈ Schk, then any Spec k[t]/tm+1 → X and Spec kJtK → X
must factor through any affine open neighborhood of the image
of the closed point. Consequently, the elements of J∞X(k) cor-
respond to arcs in X; i.e., we have a bijection

HomSchk
(Spec k, J∞X) ∼= HomSchk

(Spec kJtK, X).



Arc spaces

Arcs of affine schemes can be defined via a functor of points. If
X ∈ AffSchk, then for all A ∈ Algk, we have using the functor
of points description of jet schemes,

HomSchk
(SpecA, J∞X) ∼= lim←−HomSchk

(SpecA, JmX)

∼= lim←−HomSchk
(SpecA[t]/tm+1, X)

∼= HomSchk
(SpecAJtK, X).

If X ∈ Schk, then any Spec k[t]/tm+1 → X and Spec kJtK → X
must factor through any affine open neighborhood of the image
of the closed point. Consequently, the elements of J∞X(k) cor-
respond to arcs in X; i.e., we have a bijection

HomSchk
(Spec k, J∞X) ∼= HomSchk

(Spec kJtK, X).



Arc spaces

Arcs of affine schemes can be defined via a functor of points. If
X ∈ AffSchk, then for all A ∈ Algk, we have using the functor
of points description of jet schemes,

HomSchk
(SpecA, J∞X) ∼= lim←−HomSchk

(SpecA, JmX)

∼= lim←−HomSchk
(SpecA[t]/tm+1, X)

∼= HomSchk
(SpecAJtK, X).

If X ∈ Schk, then any Spec k[t]/tm+1 → X and Spec kJtK → X
must factor through any affine open neighborhood of the image
of the closed point. Consequently, the elements of J∞X(k) cor-
respond to arcs in X; i.e., we have a bijection

HomSchk
(Spec k, J∞X) ∼= HomSchk

(Spec kJtK, X).



Arc spaces

Arcs of affine schemes can be defined via a functor of points. If
X ∈ AffSchk, then for all A ∈ Algk, we have using the functor
of points description of jet schemes,

HomSchk
(SpecA, J∞X) ∼= lim←−HomSchk

(SpecA, JmX)

∼= lim←−HomSchk
(SpecA[t]/tm+1, X)

∼= HomSchk
(SpecAJtK, X).

If X ∈ Schk, then any Spec k[t]/tm+1 → X and Spec kJtK → X
must factor through any affine open neighborhood of the image
of the closed point. Consequently, the elements of J∞X(k) cor-
respond to arcs in X; i.e., we have a bijection

HomSchk
(Spec k, J∞X) ∼= HomSchk

(Spec kJtK, X).



Arc spaces

Our X is always of finite type, but see that J∞X rarely is. If
X ∈ AffSchftk , using our previous theorem, we have

Theorem. If X ∈ AffSchftk , then

J∞X ∼= Spec k[xi, xi
′, xi

′′, . . . | 1 ≤ i ≤ n]�(fj , fj
′, fj

′′, . . . | 1 ≤ j ≤ s).

Other facts:

• By construction there are natural affine morphisms
ψm : J∞X → JmX.

• If f : X → Y is étale, then J∞X ∼= X ×Y J∞Y .

• Theorem [Kolchin]. If X is a variety, then J∞X is
irreducible. (X nonsingular is easy, X singular requires
resolution of singularities (char k = 0))



Arc spaces

Our X is always of finite type, but see that J∞X rarely is. If
X ∈ AffSchftk , using our previous theorem, we have

Theorem. If X ∈ AffSchftk , then

J∞X ∼= Spec k[xi, xi
′, xi

′′, . . . | 1 ≤ i ≤ n]�(fj , fj
′, fj

′′, . . . | 1 ≤ j ≤ s).

Other facts:

• By construction there are natural affine morphisms
ψm : J∞X → JmX.

• If f : X → Y is étale, then J∞X ∼= X ×Y J∞Y .

• Theorem [Kolchin]. If X is a variety, then J∞X is
irreducible. (X nonsingular is easy, X singular requires
resolution of singularities (char k = 0))



Arc spaces

Our X is always of finite type, but see that J∞X rarely is. If
X ∈ AffSchftk , using our previous theorem, we have

Theorem. If X ∈ AffSchftk , then

J∞X ∼= Spec k[xi, xi
′, xi

′′, . . . | 1 ≤ i ≤ n]�(fj , fj
′, fj

′′, . . . | 1 ≤ j ≤ s).

Other facts:

• By construction there are natural affine morphisms
ψm : J∞X → JmX.

• If f : X → Y is étale, then J∞X ∼= X ×Y J∞Y .

• Theorem [Kolchin]. If X is a variety, then J∞X is
irreducible. (X nonsingular is easy, X singular requires
resolution of singularities (char k = 0))



Arc spaces

Our X is always of finite type, but see that J∞X rarely is. If
X ∈ AffSchftk , using our previous theorem, we have

Theorem. If X ∈ AffSchftk , then

J∞X ∼= Spec k[xi, xi
′, xi

′′, . . . | 1 ≤ i ≤ n]�(fj , fj
′, fj

′′, . . . | 1 ≤ j ≤ s).

Other facts:

• By construction there are natural affine morphisms
ψm : J∞X → JmX.

• If f : X → Y is étale, then J∞X ∼= X ×Y J∞Y .

• Theorem [Kolchin]. If X is a variety, then J∞X is
irreducible. (X nonsingular is easy, X singular requires
resolution of singularities (char k = 0))



Arc spaces

Our X is always of finite type, but see that J∞X rarely is. If
X ∈ AffSchftk , using our previous theorem, we have

Theorem. If X ∈ AffSchftk , then

J∞X ∼= Spec k[xi, xi
′, xi

′′, . . . | 1 ≤ i ≤ n]�(fj , fj
′, fj

′′, . . . | 1 ≤ j ≤ s).

Other facts:

• By construction there are natural affine morphisms
ψm : J∞X → JmX.

• If f : X → Y is étale, then J∞X ∼= X ×Y J∞Y .

• Theorem [Kolchin]. If X is a variety, then J∞X is
irreducible. (X nonsingular is easy, X singular requires
resolution of singularities (char k = 0))



Arc spaces

Our X is always of finite type, but see that J∞X rarely is. If
X ∈ AffSchftk , using our previous theorem, we have

Theorem. If X ∈ AffSchftk , then

J∞X ∼= Spec k[xi, xi
′, xi

′′, . . . | 1 ≤ i ≤ n]�(fj , fj
′, fj

′′, . . . | 1 ≤ j ≤ s).

Other facts:

• By construction there are natural affine morphisms
ψm : J∞X → JmX.

• If f : X → Y is étale, then J∞X ∼= X ×Y J∞Y .

• Theorem [Kolchin]. If X is a variety, then J∞X is
irreducible. (X nonsingular is easy, X singular requires
resolution of singularities (char k = 0))



Cylinders

A subset S of a scheme Y is said to be constructible if it is a
finite union of locally closed subsets.

A cylinder in J∞X is a subset of the form C = ψm
−1(S) for some

S ⊆ JmX a constructible subset.

We say a cylinder C = ψm
−1(S) is closed / open / locally closed

/ irreducible if S is.

Let C = ψm
−1(S) be a cylinder. We define

codim(C) := codim(S, JmX) = (m+ 1)n− dim(S)

(independent of m).



Cylinders

A subset S of a scheme Y is said to be constructible if it is a
finite union of locally closed subsets.

A cylinder in J∞X is a subset of the form C = ψm
−1(S) for some

S ⊆ JmX a constructible subset.

We say a cylinder C = ψm
−1(S) is closed / open / locally closed

/ irreducible if S is.

Let C = ψm
−1(S) be a cylinder. We define

codim(C) := codim(S, JmX) = (m+ 1)n− dim(S)

(independent of m).



Cylinders

A subset S of a scheme Y is said to be constructible if it is a
finite union of locally closed subsets.

A cylinder in J∞X is a subset of the form C = ψm
−1(S) for some

S ⊆ JmX a constructible subset.

We say a cylinder C = ψm
−1(S) is closed / open / locally closed

/ irreducible if S is.

Let C = ψm
−1(S) be a cylinder. We define

codim(C) := codim(S, JmX) = (m+ 1)n− dim(S)

(independent of m).



Cylinders

A subset S of a scheme Y is said to be constructible if it is a
finite union of locally closed subsets.

A cylinder in J∞X is a subset of the form C = ψm
−1(S) for some

S ⊆ JmX a constructible subset.

We say a cylinder C = ψm
−1(S) is closed / open / locally closed

/ irreducible if S is.

Let C = ψm
−1(S) be a cylinder. We define

codim(C) := codim(S, JmX) = (m+ 1)n− dim(S)

(independent of m).



Cylinders

A subset S of a scheme Y is said to be constructible if it is a
finite union of locally closed subsets.

A cylinder in J∞X is a subset of the form C = ψm
−1(S) for some

S ⊆ JmX a constructible subset.

We say a cylinder C = ψm
−1(S) is closed / open / locally closed

/ irreducible if S is.

Let C = ψm
−1(S) be a cylinder. We define

codim(C) := codim(S, JmX) = (m+ 1)n− dim(S)

(independent of m).



Cylinders

Let X be nonsingular. Facts about cylinders:

1 If C = ψm
−1(S), then given an irreducible decomposition

S = S1 ∪ · · · ∪ Sr, we get C = ψm
−1(S1) ∪ · · · ∪ ψm−1(Sr).

2 In particular, if S has a finite irreducible decomposition,
then C = ψm

−1(S) has a finite irreducible decomposition.

3 If C = ψm
−1(S) is a cylinder, then C = ψm

−1(S) is a
cylinder.

4 If C ′ is an irreducible component of a cylinder C, then
there does not exist a proper closed subset Z ⊆ X such
that C ′ ⊆ J∞Z.

If X is singular, bullets (1) and (4) fail, while (3) is an open
problem.



Cylinders

Let X be nonsingular. Facts about cylinders:

1 If C = ψm
−1(S), then given an irreducible decomposition

S = S1 ∪ · · · ∪ Sr, we get C = ψm
−1(S1) ∪ · · · ∪ ψm−1(Sr).

2 In particular, if S has a finite irreducible decomposition,
then C = ψm

−1(S) has a finite irreducible decomposition.

3 If C = ψm
−1(S) is a cylinder, then C = ψm

−1(S) is a
cylinder.

4 If C ′ is an irreducible component of a cylinder C, then
there does not exist a proper closed subset Z ⊆ X such
that C ′ ⊆ J∞Z.

If X is singular, bullets (1) and (4) fail, while (3) is an open
problem.



Cylinders

Let X be nonsingular. Facts about cylinders:

1 If C = ψm
−1(S), then given an irreducible decomposition

S = S1 ∪ · · · ∪ Sr, we get C = ψm
−1(S1) ∪ · · · ∪ ψm−1(Sr).

2 In particular, if S has a finite irreducible decomposition,
then C = ψm

−1(S) has a finite irreducible decomposition.

3 If C = ψm
−1(S) is a cylinder, then C = ψm

−1(S) is a
cylinder.

4 If C ′ is an irreducible component of a cylinder C, then
there does not exist a proper closed subset Z ⊆ X such
that C ′ ⊆ J∞Z.

If X is singular, bullets (1) and (4) fail, while (3) is an open
problem.



Cylinders

Let X be nonsingular. Facts about cylinders:

1 If C = ψm
−1(S), then given an irreducible decomposition

S = S1 ∪ · · · ∪ Sr, we get C = ψm
−1(S1) ∪ · · · ∪ ψm−1(Sr).

2 In particular, if S has a finite irreducible decomposition,
then C = ψm

−1(S) has a finite irreducible decomposition.

3 If C = ψm
−1(S) is a cylinder, then C = ψm

−1(S) is a
cylinder.

4 If C ′ is an irreducible component of a cylinder C, then
there does not exist a proper closed subset Z ⊆ X such
that C ′ ⊆ J∞Z.

If X is singular, bullets (1) and (4) fail, while (3) is an open
problem.



Cylinders

Let X be nonsingular. Facts about cylinders:

1 If C = ψm
−1(S), then given an irreducible decomposition

S = S1 ∪ · · · ∪ Sr, we get C = ψm
−1(S1) ∪ · · · ∪ ψm−1(Sr).

2 In particular, if S has a finite irreducible decomposition,
then C = ψm

−1(S) has a finite irreducible decomposition.

3 If C = ψm
−1(S) is a cylinder, then C = ψm

−1(S) is a
cylinder.

4 If C ′ is an irreducible component of a cylinder C, then
there does not exist a proper closed subset Z ⊆ X such
that C ′ ⊆ J∞Z.

If X is singular, bullets (1) and (4) fail, while (3) is an open
problem.



Cylinders

Let X be nonsingular. Facts about cylinders:

1 If C = ψm
−1(S), then given an irreducible decomposition

S = S1 ∪ · · · ∪ Sr, we get C = ψm
−1(S1) ∪ · · · ∪ ψm−1(Sr).

2 In particular, if S has a finite irreducible decomposition,
then C = ψm

−1(S) has a finite irreducible decomposition.

3 If C = ψm
−1(S) is a cylinder, then C = ψm

−1(S) is a
cylinder.

4 If C ′ is an irreducible component of a cylinder C, then
there does not exist a proper closed subset Z ⊆ X such
that C ′ ⊆ J∞Z.

If X is singular, bullets (1) and (4) fail, while (3) is an open
problem.



Cylinders

Important example of cylinders:

Let Z ⊆ X be a proper closed subscheme. Define a function
ordZ : J∞X → N∪{0,∞} given by, if γ : Spec kJtK→ X ∈ J∞X,
then the inverse image of the ideal defining Z is an ideal in kJtK
generated by tordZ(γ).
The contact locus of order m with Z is defined to be the set
Contm(Z) := ordZ

−1(m). Similarly, Cont≥m(Z) := ordZ
−1(≥ m).

One can check that

Cont≥m(Z) = ψm−1
−1(Jm−1Z),

so Cont≥m(Z) is a closed cylinder. Also Contm(Z) is a locally
closed cylinder.



Cylinders

Important example of cylinders:

Let Z ⊆ X be a proper closed subscheme. Define a function
ordZ : J∞X → N∪{0,∞} given by, if γ : Spec kJtK→ X ∈ J∞X,
then the inverse image of the ideal defining Z is an ideal in kJtK
generated by tordZ(γ).

The contact locus of order m with Z is defined to be the set
Contm(Z) := ordZ

−1(m). Similarly, Cont≥m(Z) := ordZ
−1(≥ m).

One can check that

Cont≥m(Z) = ψm−1
−1(Jm−1Z),

so Cont≥m(Z) is a closed cylinder. Also Contm(Z) is a locally
closed cylinder.



Cylinders

Important example of cylinders:

Let Z ⊆ X be a proper closed subscheme. Define a function
ordZ : J∞X → N∪{0,∞} given by, if γ : Spec kJtK→ X ∈ J∞X,
then the inverse image of the ideal defining Z is an ideal in kJtK
generated by tordZ(γ).
The contact locus of order m with Z is defined to be the set
Contm(Z) := ordZ

−1(m). Similarly, Cont≥m(Z) := ordZ
−1(≥ m).

One can check that

Cont≥m(Z) = ψm−1
−1(Jm−1Z),

so Cont≥m(Z) is a closed cylinder. Also Contm(Z) is a locally
closed cylinder.



Cylinders

Important example of cylinders:

Let Z ⊆ X be a proper closed subscheme. Define a function
ordZ : J∞X → N∪{0,∞} given by, if γ : Spec kJtK→ X ∈ J∞X,
then the inverse image of the ideal defining Z is an ideal in kJtK
generated by tordZ(γ).
The contact locus of order m with Z is defined to be the set
Contm(Z) := ordZ

−1(m). Similarly, Cont≥m(Z) := ordZ
−1(≥ m).

One can check that

Cont≥m(Z) = ψm−1
−1(Jm−1Z),

so Cont≥m(Z) is a closed cylinder. Also Contm(Z) is a locally
closed cylinder.



The Birational Transformation Theorem

The Birational Transformation Theorem [Kontsevich] describes
the behavior of contact loci defined by a particular effective divi-
sor KX/Y ⊆ X for a fixed map f : X → Y . We will state it, then
use it to calculate log canonical thresholds using jets and arcs.

Setup: let f : X → Y be a proper birational morphism. Let
dimX = dimY = n. Give X and Y local coordinates at P ∈ X
and f(P ) ∈ Y ; call them x1, . . . , xn and y1, . . . , yn. Define the
relative canonical divisor KX/Y to be the unique effective divisor
obtained by local equation at P ∈ X the determinant of the
Jacobian 

∂f1
∂x1

∂f2
∂x1

· · · ∂fn
∂x1

∂f1
∂x2
...

. . .
...

∂f1
∂xn

· · · ∂fn
∂xn


where fi ∈ kJx1, . . . , xnK is given by f∗(yi) = fi(x1, . . . , xn).



The Birational Transformation Theorem
The Birational Transformation Theorem [Kontsevich] describes
the behavior of contact loci defined by a particular effective divi-
sor KX/Y ⊆ X for a fixed map f : X → Y . We will state it, then
use it to calculate log canonical thresholds using jets and arcs.

Setup: let f : X → Y be a proper birational morphism. Let
dimX = dimY = n. Give X and Y local coordinates at P ∈ X
and f(P ) ∈ Y ; call them x1, . . . , xn and y1, . . . , yn. Define the
relative canonical divisor KX/Y to be the unique effective divisor
obtained by local equation at P ∈ X the determinant of the
Jacobian 

∂f1
∂x1

∂f2
∂x1

· · · ∂fn
∂x1

∂f1
∂x2
...

. . .
...

∂f1
∂xn

· · · ∂fn
∂xn


where fi ∈ kJx1, . . . , xnK is given by f∗(yi) = fi(x1, . . . , xn).



The Birational Transformation Theorem
The Birational Transformation Theorem [Kontsevich] describes
the behavior of contact loci defined by a particular effective divi-
sor KX/Y ⊆ X for a fixed map f : X → Y . We will state it, then
use it to calculate log canonical thresholds using jets and arcs.

Setup: let f : X → Y be a proper birational morphism. Let
dimX = dimY = n. Give X and Y local coordinates at P ∈ X
and f(P ) ∈ Y ; call them x1, . . . , xn and y1, . . . , yn. Define the
relative canonical divisor KX/Y to be the unique effective divisor
obtained by local equation at P ∈ X the determinant of the
Jacobian 

∂f1
∂x1

∂f2
∂x1

· · · ∂fn
∂x1

∂f1
∂x2
...

. . .
...

∂f1
∂xn

· · · ∂fn
∂xn


where fi ∈ kJx1, . . . , xnK is given by f∗(yi) = fi(x1, . . . , xn).



The Birational Transformation Theorem

Setup (cont.): Define a cylinder C(e) := Conte(KX/Y ) for e ∈ N.

Write ψXm : J∞X → JmX and ψYm : J∞Y → JmY . Write
πXm,p : JmX → JpX and πYm,p : JmY → JpY .

Theorem [Kontsevich]. Given the prior setup, let m ≥ 2e.

1 Let γm, γ
′
m ∈ JmX. If γm ∈ ψXm(C(e)) and

Jmf(γm) = Jmf(γ′m), then

πXm,m−e(γm) = πXm,m−e(γ
′
m).

2 The induced map

ψXm(C(e))→ Jmf(ψXm(C(e)))

is piecewise trivial with fiber Ae.



The Birational Transformation Theorem

Setup (cont.): Define a cylinder C(e) := Conte(KX/Y ) for e ∈ N.

Write ψXm : J∞X → JmX and ψYm : J∞Y → JmY . Write
πXm,p : JmX → JpX and πYm,p : JmY → JpY .

Theorem [Kontsevich]. Given the prior setup, let m ≥ 2e.

1 Let γm, γ
′
m ∈ JmX. If γm ∈ ψXm(C(e)) and

Jmf(γm) = Jmf(γ′m), then

πXm,m−e(γm) = πXm,m−e(γ
′
m).

2 The induced map

ψXm(C(e))→ Jmf(ψXm(C(e)))

is piecewise trivial with fiber Ae.



The Birational Transformation Theorem

Setup (cont.): Define a cylinder C(e) := Conte(KX/Y ) for e ∈ N.

Write ψXm : J∞X → JmX and ψYm : J∞Y → JmY . Write
πXm,p : JmX → JpX and πYm,p : JmY → JpY .

Theorem [Kontsevich]. Given the prior setup, let m ≥ 2e.

1 Let γm, γ
′
m ∈ JmX. If γm ∈ ψXm(C(e)) and

Jmf(γm) = Jmf(γ′m), then

πXm,m−e(γm) = πXm,m−e(γ
′
m).

2 The induced map

ψXm(C(e))→ Jmf(ψXm(C(e)))

is piecewise trivial with fiber Ae.



Computing log canonical thresholds
using jets and arcs

Recall: let X be a nonsingular variety and Y ⊆ X a proper closed
subscheme. Let f : X ′ → X be a log resolution of (X,Y ); i.e., f
is proper and birational, X ′ is nonsingular, and f−1(Y ) +KX′/X

has simple normal crossings. We have seen that the log canonical
threshold can be defined as

lct(X,Y ) := min
i

ki + 1

ai
,

where

f−1(Y ) =

s∑
i=1

aiEi and KX′/X =

s∑
i=1

kiEi.



Computing log canonical thresholds
using jets and arcs

Recall: let X be a nonsingular variety and Y ⊆ X a proper closed
subscheme. Let f : X ′ → X be a log resolution of (X,Y ); i.e., f
is proper and birational, X ′ is nonsingular, and f−1(Y ) +KX′/X

has simple normal crossings. We have seen that the log canonical
threshold can be defined as

lct(X,Y ) := min
i

ki + 1

ai
,

where

f−1(Y ) =

s∑
i=1

aiEi and KX′/X =

s∑
i=1

kiEi.



Computing log canonical thresholds
using jets and arcs

Theorem [Ein-Lazarsfeld-Mustaţă]. Let f : X ′ → X be a log
resolution of (X,Y ) and as before write f−1(Y ) =

∑
aiEi and

KX′/X =
∑
kiEi. WLOG, f is an isomorphism over X \ Y , so

f−1(Y ) is effective. For all m ∈ N,

codim(Contm(Y )) = min
ν

s∑
i=1

(ki + 1)νi,

where ν = (νi) ∈ Ns such that

s∑
i=1

aiνi = m and
⋂
νi≥1

Ei 6= ∅.



Computing log canonical thresholds
using jets and arcs

Proof outline.

1 First decompose f−1(Contm(Y )) into a finite disjoint
union.

2 Next compute the codimension of each piece.

3 After that use Kontsevich’s Birational Transformation
Theorem to compute the contact loci of the relative
canonical divisor KX′/X .

4 Put the pieces together to complete the theorem.



Computing log canonical thresholds
using jets and arcs

Proof outline.

1 First decompose f−1(Contm(Y )) into a finite disjoint
union.

2 Next compute the codimension of each piece.

3 After that use Kontsevich’s Birational Transformation
Theorem to compute the contact loci of the relative
canonical divisor KX′/X .

4 Put the pieces together to complete the theorem.



Computing log canonical thresholds
using jets and arcs

Proof outline.

1 First decompose f−1(Contm(Y )) into a finite disjoint
union.

2 Next compute the codimension of each piece.

3 After that use Kontsevich’s Birational Transformation
Theorem to compute the contact loci of the relative
canonical divisor KX′/X .

4 Put the pieces together to complete the theorem.



Computing log canonical thresholds
using jets and arcs

Proof outline.

1 First decompose f−1(Contm(Y )) into a finite disjoint
union.

2 Next compute the codimension of each piece.

3 After that use Kontsevich’s Birational Transformation
Theorem to compute the contact loci of the relative
canonical divisor KX′/X .

4 Put the pieces together to complete the theorem.



Computing log canonical thresholds
using jets and arcs

Proof outline.

1 First decompose f−1(Contm(Y )) into a finite disjoint
union.

2 Next compute the codimension of each piece.

3 After that use Kontsevich’s Birational Transformation
Theorem to compute the contact loci of the relative
canonical divisor KX′/X .

4 Put the pieces together to complete the theorem.



Computing log canonical thresholds
using jets and arcs

1 First decompose f−1(Contm(Y )) into a finite disjoint
union.

The decomposition is

f−1(Contm(Y )) = Contm(f−1(Y ))

= Contm

(
s∑
i=1

aiEi

)

=
∐
ν

(
s⋂
i=1

Contνi(Ei)

)
,

where ν = (νi) and

s∑
i=1

aiνi = m.

We’ll write Contν(E) for
⋂

Contνi(Ei).



Computing log canonical thresholds
using jets and arcs

1 First decompose f−1(Contm(Y )) into a finite disjoint
union.

The decomposition is

f−1(Contm(Y )) = Contm(f−1(Y ))

= Contm

(
s∑
i=1

aiEi

)

=
∐
ν

(
s⋂
i=1

Contνi(Ei)

)
,

where ν = (νi) and

s∑
i=1

aiνi = m.

We’ll write Contν(E) for
⋂

Contνi(Ei).



Computing log canonical thresholds
using jets and arcs

2 Next compute the codimension of each piece.

Our decomposition is f−1(Contm(Y )) =
∐

Contν(E). Since∑
Ei has simple normal crossings, to compute codim(Contν(E)),

we may take an étale morphism to An so that Ei is a hyperplane
in an affine space. Using this we see that Contν(E) 6= ∅ if and
only if ⋂

νi≥1
Ei 6= ∅,

and in this case

codim(Contν(E)) =

s∑
i=1

νi.



Computing log canonical thresholds
using jets and arcs

2 Next compute the codimension of each piece.

Our decomposition is f−1(Contm(Y )) =
∐

Contν(E). Since∑
Ei has simple normal crossings, to compute codim(Contν(E)),

we may take an étale morphism to An so that Ei is a hyperplane
in an affine space. Using this we see that Contν(E) 6= ∅ if and
only if ⋂

νi≥1
Ei 6= ∅,

and in this case

codim(Contν(E)) =

s∑
i=1

νi.



Computing log canonical thresholds
using jets and arcs

3 After that use Kontsevich’s Birational Transformation
Theorem to compute the contact loci of the relative
canonical divisor KX′/X .

Note that Contν(E) ⊆ Conte(KX′/X) where e :=
∑
kivi. Let

p � 0. By [Kontsevich] (1), ψXp (Contν(E)) is a union of fibers
of Jpf . By [Kontsevich] (2),

codim(J∞f(Contν(E))) =
s∑
i=1

(ki + 1)νi.



Computing log canonical thresholds
using jets and arcs

3 After that use Kontsevich’s Birational Transformation
Theorem to compute the contact loci of the relative
canonical divisor KX′/X .

Note that Contν(E) ⊆ Conte(KX′/X) where e :=
∑
kivi. Let

p � 0. By [Kontsevich] (1), ψXp (Contν(E)) is a union of fibers
of Jpf . By [Kontsevich] (2),

codim(J∞f(Contν(E))) =

s∑
i=1

(ki + 1)νi.



Computing log canonical thresholds
using jets and arcs

4 Put the pieces together to complete the theorem.

Since f−1(Contm(Y )) =
∐

Contν(E), we also have a decompo-
sition Contm(Y ) =

∐
J∞f(Contν(E)) (Proposition: J∞f is a

bijection over Contm(Y )). Therefore,

codim(Contm(Y )) = min
ν

codim(J∞f(Contν(E)))

= min
ν

s∑
i=1

(ki + 1)νi,

as desired.



Computing log canonical thresholds
using jets and arcs

4 Put the pieces together to complete the theorem.

Since f−1(Contm(Y )) =
∐

Contν(E), we also have a decompo-
sition Contm(Y ) =

∐
J∞f(Contν(E)) (Proposition: J∞f is a

bijection over Contm(Y )). Therefore,

codim(Contm(Y )) = min
ν

codim(J∞f(Contν(E)))

= min
ν

s∑
i=1

(ki + 1)νi,

as desired.



Computing log canonical thresholds
using jets and arcs

Corollary. If X is a nonsingular variety and Y ⊆ X is a proper
closed subscheme, then

lct(X,Y ) := min
i

ki + 1

ai
= dim(X)−max

m

dim(JmY )

m+ 1
.

Proof.

[ELM] implies that codim(Cont≥m(Y )) = minν
∑

(ki + 1)νi,
where ν = (νi) satisfies m ≤

∑
aiνi.

For all i, lct(X,Y )ai ≤ ki + 1 by definition.



Computing log canonical thresholds
using jets and arcs

Corollary. If X is a nonsingular variety and Y ⊆ X is a proper
closed subscheme, then

lct(X,Y ) := min
i

ki + 1

ai
= dim(X)−max

m

dim(JmY )

m+ 1
.

Proof.

[ELM] implies that codim(Cont≥m(Y )) = minν
∑

(ki + 1)νi,
where ν = (νi) satisfies m ≤

∑
aiνi.

For all i, lct(X,Y )ai ≤ ki + 1 by definition.



Computing log canonical thresholds
using jets and arcs

Corollary. If X is a nonsingular variety and Y ⊆ X is a proper
closed subscheme, then

lct(X,Y ) := min
i

ki + 1

ai
= dim(X)−max

m

dim(JmY )

m+ 1
.

Proof.

[ELM] implies that codim(Cont≥m(Y )) = minν
∑

(ki + 1)νi,
where ν = (νi) satisfies m ≤

∑
aiνi.

For all i, lct(X,Y )ai ≤ ki + 1 by definition.



Computing log canonical thresholds
using jets and arcs

Corollary. If X is a nonsingular variety and Y ⊆ X is a proper
closed subscheme, then

lct(X,Y ) := min
i

ki + 1

ai
= dim(X)−max

m

dim(JmY )

m+ 1
.

Proof.

[ELM] implies that codim(Cont≥m(Y )) = minν
∑

(ki + 1)νi,
where ν = (νi) satisfies m ≤

∑
aiνi.

For all i, lct(X,Y )ai ≤ ki + 1 by definition.



Computing log canonical thresholds
using jets and arcs

Corollary. If X is a nonsingular variety and Y ⊆ X is a proper
closed subscheme, then

lct(X,Y ) := min
i

ki + 1

ai
= dim(X)−max

m

dim(JmY )

m+ 1
.

Proof (cont.).

Hence

m lct(X,Y ) ≤ codim(Cont≥m(Y ))

= codim(Jm−1Y, Jm−1X)

= mdim(X)− dim(Jm−1Y ).



Computing log canonical thresholds
using jets and arcs

Corollary. If X is a nonsingular variety and Y ⊆ X is a proper
closed subscheme, then

lct(X,Y ) := min
i

ki + 1

ai
= dim(X)−max

m

dim(JmY )

m+ 1
.

Proof (cont.).

Let ` be the index that realizes lct(X,Y ) = (k` + 1)/a`. Let ν
be ν` ≥ 1 and νi = 0 for i 6= `, then

codim(Cont≥a`ν`(Y )) ≤ a`ν` lct(X,Y ).

Thus dim(Jm−1Y ) ≥ m(dim(X)− lct(X,Y )) if a` divides m.
Rearrange and the result is shown.



Computing log canonical thresholds
using jets and arcs

Corollary. If X is a nonsingular variety and Y ⊆ X is a proper
closed subscheme, then

lct(X,Y ) := min
i

ki + 1

ai
= dim(X)−max

m

dim(JmY )

m+ 1
.

Proof (cont.).

Let ` be the index that realizes lct(X,Y ) = (k` + 1)/a`. Let ν
be ν` ≥ 1 and νi = 0 for i 6= `, then

codim(Cont≥a`ν`(Y )) ≤ a`ν` lct(X,Y ).

Thus dim(Jm−1Y ) ≥ m(dim(X)− lct(X,Y )) if a` divides m.
Rearrange and the result is shown.



Computing log canonical thresholds
using jets and arcs

Example. We’ve already seen that lct(A2, V (xy)) = 1 since
V (xy) has s.n.c. Via the corollary, we also see

lct(A2, V (xy)) = dim(A2)−max
m

dim(JmV (xy))

m+ 1
.

A quick jaunt to Macaulay2 confirms

dim(J0V (xy)) = dim(V (xy)) = 1,

dim(J1V (xy)) = dim(V (xy, (xy)′)) = 2,

dim(J2V (xy)) = dim(V (xy, (xy)′, (xy)′′) = 3,

...

so

lct(A2, V (xy)) = 2−max

{
1

1
,
2

2
,
3

3
, . . .

}
= 2− 1 = 1.



Computing log canonical thresholds
using jets and arcs

Example. We’ve already seen that lct(A2, V (xy)) = 1 since
V (xy) has s.n.c. Via the corollary, we also see

lct(A2, V (xy)) = dim(A2)−max
m

dim(JmV (xy))

m+ 1
.

A quick jaunt to Macaulay2 confirms

dim(J0V (xy)) = dim(V (xy)) = 1,

dim(J1V (xy)) = dim(V (xy, (xy)′)) = 2,

dim(J2V (xy)) = dim(V (xy, (xy)′, (xy)′′) = 3,

...

so

lct(A2, V (xy)) = 2−max

{
1

1
,
2

2
,
3

3
, . . .

}
= 2− 1 = 1.



Computing log canonical thresholds
using jets and arcs

Example. We’ve already seen that lct(A2, V (xy)) = 1 since
V (xy) has s.n.c. Via the corollary, we also see

lct(A2, V (xy)) = dim(A2)−max
m

dim(JmV (xy))

m+ 1
.

A quick jaunt to Macaulay2 confirms

dim(J0V (xy)) = dim(V (xy)) = 1,

dim(J1V (xy)) = dim(V (xy, (xy)′)) = 2,

dim(J2V (xy)) = dim(V (xy, (xy)′, (xy)′′) = 3,

...

so

lct(A2, V (xy)) = 2−max

{
1

1
,
2

2
,
3

3
, . . .

}
= 2− 1 = 1.



Computing log canonical thresholds
using jets and arcs

Example. We’ve already seen that lct(A2, V (xy)) = 1 since
V (xy) has s.n.c. Via the corollary, we also see

lct(A2, V (xy)) = dim(A2)−max
m

dim(JmV (xy))

m+ 1
.

A quick jaunt to Macaulay2 confirms

dim(J0V (xy)) = dim(V (xy)) = 1,

dim(J1V (xy)) = dim(V (xy, (xy)′)) = 2,

dim(J2V (xy)) = dim(V (xy, (xy)′, (xy)′′) = 3,

...

so

lct(A2, V (xy)) = 2−max

{
1

1
,
2

2
,
3

3
, . . .

}
= 2− 1 = 1.



Computing log canonical thresholds
using jets and arcs

Example. We’ve also seen lct(A2, V (x2 − y3)) = 5/6.

lct(A2, V (x2 − y3)) = dim(A2)−max
m

dim(JmV (x2 − y3))
m+ 1

.

We calculate

dim(J0V (x2 − y3)) = 1,

dim(J1V (x2 − y3)) = 2,

dim(J2V (x2 − y3)) = 3,

...

dim(J5V (x2 − y3)) = 7,

so

lct(A2, V (x2 − y3)) = 2−max

{
1, 1, 1 . . . ,

7

6
, . . .

}
= 2− 7

6
=

5

6
.



Computing log canonical thresholds
using jets and arcs

Example. We’ve also seen lct(A2, V (x2 − y3)) = 5/6.

lct(A2, V (x2 − y3)) = dim(A2)−max
m

dim(JmV (x2 − y3))
m+ 1

.

We calculate

dim(J0V (x2 − y3)) = 1,

dim(J1V (x2 − y3)) = 2,

dim(J2V (x2 − y3)) = 3,

...

dim(J5V (x2 − y3)) = 7,

so

lct(A2, V (x2 − y3)) = 2−max

{
1, 1, 1 . . . ,

7

6
, . . .

}
= 2− 7

6
=

5

6
.



Computing log canonical thresholds
using jets and arcs

Example. We’ve also seen lct(A2, V (x2 − y3)) = 5/6.

lct(A2, V (x2 − y3)) = dim(A2)−max
m

dim(JmV (x2 − y3))
m+ 1

.

We calculate

dim(J0V (x2 − y3)) = 1,

dim(J1V (x2 − y3)) = 2,

dim(J2V (x2 − y3)) = 3,

...

dim(J5V (x2 − y3)) = 7,

so

lct(A2, V (x2 − y3)) = 2−max

{
1, 1, 1 . . . ,

7

6
, . . .

}
= 2− 7

6
=

5

6
.



Computing log canonical thresholds
using jets and arcs

Example. We’ve also seen lct(A2, V (x2 − y3)) = 5/6.

lct(A2, V (x2 − y3)) = dim(A2)−max
m

dim(JmV (x2 − y3))
m+ 1

.

We calculate

dim(J0V (x2 − y3)) = 1,

dim(J1V (x2 − y3)) = 2,

dim(J2V (x2 − y3)) = 3,

...

dim(J5V (x2 − y3)) = 7,

so

lct(A2, V (x2 − y3)) = 2−max

{
1, 1, 1 . . . ,

7

6
, . . .

}
= 2− 7

6
=

5

6
.



Computing log canonical thresholds
using jets and arcs

Example. We’ve also seen lct(A2, V (x2 − y3)) = 5/6.

lct(A2, V (x2 − y3)) = dim(A2)−max
m

dim(JmV (x2 − y3))
m+ 1

.

We calculate

dim(J0V (x2 − y3)) = 1,

dim(J1V (x2 − y3)) = 2,

dim(J2V (x2 − y3)) = 3,

...

dim(J5V (x2 − y3)) = 7,

so

lct(A2, V (x2 − y3)) = 2−max

{
1, 1, 1 . . . ,

7

6
, . . .

}
= 2− 7

6
=

5

6
.



Computing log canonical thresholds
using jets and arcs

Feel free to double check my computation of dim(J5V (x2 − y3))
in M2:

i1 : R=QQ[x0,x1,x2,x3,x4,x5,y0,y1,y2,y3,y4,y5]

i2 : I=ideal((x0)^2-(y0)^3,

2*x0*x1-3*(y0)^2*y1,

2*x0*x2+2*(x1)^2-3*(y0)^2*y2-6*y0*(y1)^2,

2*x0*x3+6*x1*x2-3*(y0)^2*y3-6*(y1)^3-18*y0*y1*y2,

2*x0*x4+6*(x2)^2+8*x3*x1-3*y4*(y0)^2-18*y0*(y2)^2-24*y3*y0*y1-36*(y1)^2*y2,

2*x0*x5+10*x4*x1+20*x3*x2-3*y5*(y0)^2-60*y3*y0*y2-60*y3*(y1)^2-30*y1*y0*y4-90*y1*(y2)^2)

i3 : dim(I)


