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Outline
Resources:

• M. Mustaţă, Spaces of arcs in birational geometry.

• T. de Fernex, The space of arcs of an algebraic variety.

Topics:

• Quick review of functors of points

• Jet spaces

• Arc spaces

• Cylinders

• The Birational Transformation Theorem

• Computing log canonical thresholds using jets and arcs

Conventions:

• k is an algebraically closed field of characteristic 0

• m ∈ N ∪ {0}
• X is a scheme of finite type over k

• For a category C, Y ∈ C means Y lives in the class obj C



Outline
Resources:
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Quick review of functors of points

Let Y ∈ Schk. Its functor of points is the functor AffSchk → Set
defined by

Y (−) = HomSchk
(Spec−, Y ).

A scheme is determined up to isomorphism by its functor of
points. Intuition: Yoneda lemma, topological invariants that
probe a topological space

Given a functor AffSchk → Set, it is the functor of points of a
scheme Y (also called a representable functor), i.e., isomorphic
to a functor of the form HomSchk

(Spec−, Y ), if and only if it has
an affine cover and can glue as a sheaf.

In our setting, we’ll define schemes via their functors of points,
and verify their existence via explicit construction.
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Jet spaces

LetX ∈ Schftk . Define themth jet space ofX, JmX (also written
Xm), to be the representing object of the functor Algk → Set,
A 7→ HomSchk

(SpecA[t]/tm+1, X). In other words, for every
A ∈ Algk, we have a functorial bijection of sets:

HomSchk
(SpecA, JmX) ∼= HomSchk

(SpecA[t]/tm+1, X).

The A-valued points of JmX are the A[t]/tm+1-valued points of
X.

Easy to check: given any X, J0X exists and is isomorphic to X.
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Jet spaces

Indeed, we have a bijection

HomSchk
(SpecA, J0X) ∼= HomSchk

(SpecA[t]/t0+1, X)

∼= HomSchk
(SpecA[t]/t,X)

∼= HomSchk
(SpecA,X)

Since representing objects are unique up to isomorphism, we get
J0X ∼= X as claimed.
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Jet spaces

There are natural morphisms between jet spaces. Let m > p.
Since

A[t]/tm+1 → A[t]/tp+1,

we have

SpecA[t]/tp+1 → SpecA[t]/tm+1,

and so

HomSchk
(SpecA[t]/tm+1, X)→ HomSchk

(SpecA[t]/tp+1, X);

therefore we have canonical projections

πm,p : JmX → JpX.

Write πm for πm,0 : JmX → J0X ∼= X.
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Jet spaces

We know J0X exists. What about the case where m > 0?

Theorem. If X ∈ Schftk , then JmX exists.

Proof outline.

1 If X ∈ AffSchftk , then JmX exists.

2 If JmX exists, then given any open subset V ⊆ X, JmV
exists and is isomorphic to πm

−1V .

3 If X ∈ Schftk , then X has an affine cover U1 ∪ · · · ∪Ur = X.

4 For each element of the cover, JmUi exists by (1). Do they
glue to form a scheme? Does that scheme satisfy the
functor of points that JmX must?
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Jet spaces
1 If X ∈ AffSchftk , then JmX exists.

Since X ∈ AffSchftk , X ∼= Spec k[x1, . . . , xn]/(f1, . . . , fs). We’ll
use a closed immersion X ↪→ An to show JmX exists.

First see a motivating example: let X ∼= Spec k[x, y]/(xy) and
let m = 2. By definition,

HomSchk
(SpecA, J2X) ∼= HomSchk

(SpecA[t]/t3,Spec k[x, y]/(xy))

∼= HomAlgk
(k[x, y]/(xy), A[t]/t3).

A k-algebra homomorphism ϕ : k[x, y]/(xy) → A[t]/t3 is deter-
mined by

ϕ(x) := a0 + a1t+ a2t
2

ϕ(y) := b0 + b1t+ b2t
2

subject to

ϕ(xy) = (a0 + a1t+ a2t
2)(b0 + b1t+ b2t

2) = 0 (mod t3).
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Jet spaces
Distributing

ϕ(xy) = (a0 + a1t+ a2t
2)(b0 + b1t+ b2t

2) = 0 (mod t3)

yields

a0b0 + (a1b0 + a0b1)t+ (a2b0 + a1b1 + a0b2)t
2 = 0.

Equating coefficients, we have

a0b0 = 0,

a1b0 + a0b1 = 0,

a2b0 + a1b1 + a0b2 = 0.

In other words, to choose a map ϕ : k[x, y]/(xy) → A[t]/t3 is to
choose a0, a1, a2, b0, b1, b2 ∈ A such that the above relations are
satisfied.
Thus the map k[x, y]/(xy) → A[t]/t3 is the same as a map
k[a0, a1, a2, b0, b1, b2]/(a0b0, a1b0 + a0b1, a2b0 + a1b1 + a0b2)→ A.
Write k[a, b]/I for this k-algebra.
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Jet spaces

Therefore,

HomSchk
(SpecA, J2X) ∼= HomSchk

(SpecA[t]/t3,Spec k[x, y]/(xy))

∼= HomAlgk
(k[x, y]/(xy), A[t]/t3)

∼= HomAlgk
(k[a, b]/I,A)

∼= HomSchk
(SpecA,Spec k[a, b]/I).

By uniqueness up to isomorphism, J2X ∼= Spec k[a, b]/I.

This process gives a general algorithm for computing JmX for
X ∈ AffSchftk . Specifying an A[t]/tm+1-point of X is a map
ϕ : k[x1, . . . , xn]/(f1, . . . , fs) → A[t]/tm+1. Consider the images
ϕ(xi) as (m + 1) choices of elements of A and subject to the
relations fj(ϕ(x1), . . . , ϕ(xn)) = 0. Consequently JmX can be
defined as an affine subscheme of An(m+1) given by the vanishing
of a set of polynomials determined by fjs.
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... but, where’s the magic ?

Recall our motivating example X = k[x, y]/(xy) with
J2X ∼= Spec k[a0, a1, a2, b0, b1, b2]/(a0b0, a1b0 + a0b1, a2b0 + a1b1 + a0b2).

Relabel variables:
J2X ∼= Spec k[x, x′, x′′, y, y′, y′′]/(xy, x′y + xy′, x′′y + x′y′ + xy′′).

Derivatives!

In fact, since char k = 0 6= 2, a change of variables allows us:
J2X ∼= Spec k[x, x′, x′′, y, y′, y′′]/(xy, x′y + xy′, x′′y + 2x′y′ + xy′′)

J2X ∼= Spec k[x, x′, x′′, y, y′, y′′]/(xy, (xy)′, (xy)′′)

DERIVATIVES!
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So the algorithm for computing JmX for X ∈ AffSchftk is effec-
tively even simpler, at least conceptually. We have shown (proof
via one example) that

Theorem. If X ∈ AffSchftk , i.e.,

X ∼= Spec k[x1, . . . , xn]/(f1, . . . , fs),

then JmX exists, and moreover,

JmX ∼= Spec k[xi, xi
′, xi

′′, . . . , xi
(m) | 1 ≤ i ≤ n]�(fj , fj

′, fj
′′, . . . , fj

(m) | 1 ≤ j ≤ s),

where we understand fj
(`) to mean formal implicit differ-

entiation.
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2 If JmX exists, then given any open subset V ⊆ X, JmV
exists and is isomorphic to πm

−1V .

We’ll show πm
−1V satisfies the functor of points that JmV must.

Let A ∈ Algk and consider the natural homomorphism induced
by πm, ιA : SpecA→ SpecA[t]/tm+1. An m-jet in JmX, a map
f : SpecA[t]/tm+1 → X, factors through V if and only if f ◦ ιA
factors through V .

SpecA V X

SpecA[t]/tm+1

ιA f

Therefore, πm
−1V is the set of jets in JmV ⊆ JmX, i.e., the

maps SpecA[t]/tm+1 → V .
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Jet spaces

3 If X ∈ Schftk , then X has an affine cover U1 ∪ · · · ∪Ur = X.

Yep, sure does!

4 For each element of the cover, JmUi exists by (1). Do they
glue to form a scheme? Does that scheme satisfy the
functor of points that JmX must?

We’d like to see the JmUis glue to form a scheme, so we need to
consider intersections on which they’d glue.
Since JmUi exist, for each i there are maps πim : JmUi → Ui,
and by (2), an intersection Jm(Ui ∩ Uj) is isomorphic to both

πim
−1

(Ui ∩Uj) and πjm
−1

(Ui ∩Uj). Thus we have concurrence on
intersections and can glue {JmUi} to form a scheme.
Does the scheme we’ve just glued satisfy the functor of points
definition that JmX must? Yes, an easy exercise for the reader.
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So jet spaces do exist. Some facts:

• If X ∈ VarsmC , then J1X ∼= TX , the total space of the
tangent bundle, by definition.

• If X ∈ Schftk , then J1X ∼= Spec Sym ΩX/k, where ΩX/k is
the module of Kähler differentials of X over k.

• If f : X → Y is a morphism of schemes, then there exists a
morphism Jmf : JmX → JmY (also written
fm : Xm → Ym).

• If f : X → Y is étale, then JmX ∼= X ×Y JmY .

• If X is a nonsingular variety of dimension n, then JmX is a
nonsingular variety of dimension n(m+ 1).

• The maps πm,p : JmX → JpX, m > p, are affine
morphisms of k-schemes.
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Arc spaces

Let X ∈ Schftk . We have a diagram of affine morphisms of k-
schemes

· · · → JmX → Jm−1X → · · · → J1X → J0X ∼= X.

By abstract nonsense, the projective limit of this diagram exists
in Schk.
Define the arc space of X, J∞X (also written X∞ and sometimes
L(X)), to be the projective limit

J∞X := lim←− J
mX.
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J∞X := lim←− J
mX.



Arc spaces

Arcs of affine schemes can be defined via a functor of points. If
X ∈ AffSchk, then for all A ∈ Algk, we have using the functor
of points description of jet schemes,

HomSchk
(SpecA, J∞X) ∼= lim←−HomSchk

(SpecA, JmX)

∼= lim←−HomSchk
(SpecA[t]/tm+1, X)

∼= HomSchk
(SpecAJtK, X).

If X ∈ Schk, then any Spec k[t]/tm+1 → X and Spec kJtK → X
must factor through any affine open neighborhood of the image
of the closed point. Consequently, the elements of J∞X(k) cor-
respond to arcs in X; i.e., we have a bijection

HomSchk
(Spec k, J∞X) ∼= HomSchk

(Spec kJtK, X).
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Arc spaces

Our X is always of finite type, but see that J∞X rarely is. If
X ∈ AffSchftk , using our previous theorem, we have

Theorem. If X ∈ AffSchftk , then

J∞X ∼= Spec k[xi, xi
′, xi

′′, . . . | 1 ≤ i ≤ n]�(fj , fj
′, fj

′′, . . . | 1 ≤ j ≤ s).

Other facts:

• By construction there are natural affine morphisms
ψm : J∞X → JmX.

• If f : X → Y is étale, then J∞X ∼= X ×Y J∞Y .

• Theorem [Kolchin]. If X is a variety, then J∞X is
irreducible. (X nonsingular is easy, X singular requires
resolution of singularities (char k = 0))
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Cylinders

A subset S of a scheme Y is said to be constructible if it is a
finite union of locally closed subsets.

A cylinder in J∞X is a subset of the form C = ψm
−1(S) for some

S ⊆ JmX a constructible subset.

We say a cylinder C = ψm
−1(S) is closed / open / locally closed

/ irreducible if S is.

Let C = ψm
−1(S) be a cylinder. We define

codim(C) := codim(S, JmX) = (m+ 1)n− dim(S)

(independent of m).
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Cylinders

Let X be nonsingular. Facts about cylinders:

1 If C = ψm
−1(S), then given an irreducible decomposition

S = S1 ∪ · · · ∪ Sr, we get C = ψm
−1(S1) ∪ · · · ∪ ψm−1(Sr).

2 In particular, if S has a finite irreducible decomposition,
then C = ψm

−1(S) has a finite irreducible decomposition.

3 If C = ψm
−1(S) is a cylinder, then C = ψm

−1(S) is a
cylinder.

4 If C ′ is an irreducible component of a cylinder C, then
there does not exist a proper closed subset Z ⊆ X such
that C ′ ⊆ J∞Z.

If X is singular, bullets (1) and (4) fail, while (3) is an open
problem.
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Cylinders

Important example of cylinders:

Let Z ⊆ X be a proper closed subscheme. Define a function
ordZ : J∞X → N∪{0,∞} given by, if γ : Spec kJtK→ X ∈ J∞X,
then the inverse image of the ideal defining Z is an ideal in kJtK
generated by tordZ(γ).
The contact locus of order m with Z is defined to be the set
Contm(Z) := ordZ

−1(m). Similarly, Cont≥m(Z) := ordZ
−1(≥ m).

One can check that

Cont≥m(Z) = ψm−1
−1(Jm−1Z),

so Cont≥m(Z) is a closed cylinder. Also Contm(Z) is a locally
closed cylinder.
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The Birational Transformation Theorem

The Birational Transformation Theorem [Kontsevich] describes
the behavior of contact loci defined by a particular effective divi-
sor KX/Y ⊆ X for a fixed map f : X → Y . We will state it, then
use it to calculate log canonical thresholds using jets and arcs.

Setup: let f : X → Y be a proper birational morphism. Let
dimX = dimY = n. Give X and Y local coordinates at P ∈ X
and f(P ) ∈ Y ; call them x1, . . . , xn and y1, . . . , yn. Define the
relative canonical divisor KX/Y to be the unique effective divisor
obtained by local equation at P ∈ X the determinant of the
Jacobian 

∂f1
∂x1

∂f2
∂x1

· · · ∂fn
∂x1

∂f1
∂x2
...

. . .
...

∂f1
∂xn

· · · ∂fn
∂xn


where fi ∈ kJx1, . . . , xnK is given by f∗(yi) = fi(x1, . . . , xn).
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The Birational Transformation Theorem

Setup (cont.): Define a cylinder C(e) := Conte(KX/Y ) for e ∈ N.

Write ψXm : J∞X → JmX and ψYm : J∞Y → JmY . Write
πXm,p : JmX → JpX and πYm,p : JmY → JpY .

Theorem [Kontsevich]. Given the prior setup, let m ≥ 2e.

1 Let γm, γ
′
m ∈ JmX. If γm ∈ ψXm(C(e)) and

Jmf(γm) = Jmf(γ′m), then

πXm,m−e(γm) = πXm,m−e(γ
′
m).

2 The induced map

ψXm(C(e))→ Jmf(ψXm(C(e)))

is piecewise trivial with fiber Ae.
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Computing log canonical thresholds
using jets and arcs

Recall: let X be a nonsingular variety and Y ⊆ X a proper closed
subscheme. Let f : X ′ → X be a log resolution of (X,Y ); i.e., f
is proper and birational, X ′ is nonsingular, and f−1(Y ) +KX′/X

has simple normal crossings. We have seen that the log canonical
threshold can be defined as

lct(X,Y ) := min
i

ki + 1

ai
,

where

f−1(Y ) =

s∑
i=1

aiEi and KX′/X =

s∑
i=1

kiEi.
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Computing log canonical thresholds
using jets and arcs

Theorem [Ein-Lazarsfeld-Mustaţă]. Let f : X ′ → X be a log
resolution of (X,Y ) and as before write f−1(Y ) =

∑
aiEi and

KX′/X =
∑
kiEi. WLOG, f is an isomorphism over X \ Y , so

f−1(Y ) is effective. For all m ∈ N,

codim(Contm(Y )) = min
ν

s∑
i=1

(ki + 1)νi,

where ν = (νi) ∈ Ns such that

s∑
i=1

aiνi = m and
⋂
νi≥1

Ei 6= ∅.



Computing log canonical thresholds
using jets and arcs

Proof outline.

1 First decompose f−1(Contm(Y )) into a finite disjoint
union.

2 Next compute the codimension of each piece.

3 After that use Kontsevich’s Birational Transformation
Theorem to compute the contact loci of the relative
canonical divisor KX′/X .

4 Put the pieces together to complete the theorem.
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1 First decompose f−1(Contm(Y )) into a finite disjoint
union.

The decomposition is

f−1(Contm(Y )) = Contm(f−1(Y ))

= Contm

(
s∑
i=1

aiEi

)

=
∐
ν

(
s⋂
i=1

Contνi(Ei)

)
,

where ν = (νi) and

s∑
i=1

aiνi = m.

We’ll write Contν(E) for
⋂

Contνi(Ei).
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2 Next compute the codimension of each piece.

Our decomposition is f−1(Contm(Y )) =
∐

Contν(E). Since∑
Ei has simple normal crossings, to compute codim(Contν(E)),

we may take an étale morphism to An so that Ei is a hyperplane
in an affine space. Using this we see that Contν(E) 6= ∅ if and
only if ⋂

νi≥1
Ei 6= ∅,

and in this case

codim(Contν(E)) =

s∑
i=1

νi.
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3 After that use Kontsevich’s Birational Transformation
Theorem to compute the contact loci of the relative
canonical divisor KX′/X .

Note that Contν(E) ⊆ Conte(KX′/X) where e :=
∑
kivi. Let

p � 0. By [Kontsevich] (1), ψXp (Contν(E)) is a union of fibers
of Jpf . By [Kontsevich] (2),

codim(J∞f(Contν(E))) =
s∑
i=1

(ki + 1)νi.
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4 Put the pieces together to complete the theorem.

Since f−1(Contm(Y )) =
∐

Contν(E), we also have a decompo-
sition Contm(Y ) =

∐
J∞f(Contν(E)) (Proposition: J∞f is a

bijection over Contm(Y )). Therefore,

codim(Contm(Y )) = min
ν

codim(J∞f(Contν(E)))

= min
ν

s∑
i=1

(ki + 1)νi,

as desired.
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Corollary. If X is a nonsingular variety and Y ⊆ X is a proper
closed subscheme, then

lct(X,Y ) := min
i

ki + 1

ai
= dim(X)−max

m

dim(JmY )

m+ 1
.

Proof.

[ELM] implies that codim(Cont≥m(Y )) = minν
∑

(ki + 1)νi,
where ν = (νi) satisfies m ≤

∑
aiνi.

For all i, lct(X,Y )ai ≤ ki + 1 by definition.
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Corollary. If X is a nonsingular variety and Y ⊆ X is a proper
closed subscheme, then

lct(X,Y ) := min
i

ki + 1

ai
= dim(X)−max

m

dim(JmY )

m+ 1
.

Proof (cont.).

Hence

m lct(X,Y ) ≤ codim(Cont≥m(Y ))

= codim(Jm−1Y, Jm−1X)

= mdim(X)− dim(Jm−1Y ).
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Corollary. If X is a nonsingular variety and Y ⊆ X is a proper
closed subscheme, then

lct(X,Y ) := min
i

ki + 1

ai
= dim(X)−max

m

dim(JmY )

m+ 1
.

Proof (cont.).

Let ` be the index that realizes lct(X,Y ) = (k` + 1)/a`. Let ν
be ν` ≥ 1 and νi = 0 for i 6= `, then

codim(Cont≥a`ν`(Y )) ≤ a`ν` lct(X,Y ).

Thus dim(Jm−1Y ) ≥ m(dim(X)− lct(X,Y )) if a` divides m.
Rearrange and the result is shown.
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Example. We’ve already seen that lct(A2, V (xy)) = 1 since
V (xy) has s.n.c. Via the corollary, we also see

lct(A2, V (xy)) = dim(A2)−max
m

dim(JmV (xy))

m+ 1
.

A quick jaunt to Macaulay2 confirms

dim(J0V (xy)) = dim(V (xy)) = 1,

dim(J1V (xy)) = dim(V (xy, (xy)′)) = 2,

dim(J2V (xy)) = dim(V (xy, (xy)′, (xy)′′) = 3,

...

so

lct(A2, V (xy)) = 2−max

{
1

1
,
2

2
,
3

3
, . . .

}
= 2− 1 = 1.
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Example. We’ve also seen lct(A2, V (x2 − y3)) = 5/6.

lct(A2, V (x2 − y3)) = dim(A2)−max
m

dim(JmV (x2 − y3))
m+ 1

.

We calculate

dim(J0V (x2 − y3)) = 1,

dim(J1V (x2 − y3)) = 2,

dim(J2V (x2 − y3)) = 3,

...

dim(J5V (x2 − y3)) = 7,

so

lct(A2, V (x2 − y3)) = 2−max

{
1, 1, 1 . . . ,

7

6
, . . .

}
= 2− 7

6
=

5

6
.
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Feel free to double check my computation of dim(J5V (x2 − y3))
in M2:

i1 : R=QQ[x0,x1,x2,x3,x4,x5,y0,y1,y2,y3,y4,y5]

i2 : I=ideal((x0)^2-(y0)^3,

2*x0*x1-3*(y0)^2*y1,

2*x0*x2+2*(x1)^2-3*(y0)^2*y2-6*y0*(y1)^2,

2*x0*x3+6*x1*x2-3*(y0)^2*y3-6*(y1)^3-18*y0*y1*y2,

2*x0*x4+6*(x2)^2+8*x3*x1-3*y4*(y0)^2-18*y0*(y2)^2-24*y3*y0*y1-36*(y1)^2*y2,

2*x0*x5+10*x4*x1+20*x3*x2-3*y5*(y0)^2-60*y3*y0*y2-60*y3*(y1)^2-30*y1*y0*y4-90*y1*(y2)^2)

i3 : dim(I)


